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Abstract

As assistive agents become increasingly ubiquitous in home
environments, it is ever more important that they are designed
to operate within the preferences of the humans around them.
Furthermore, these methods should present minimal burden
to the user, thus it is key to be able to learn in a data-efficient
manner. In this work we propose a study design to learn and
evaluate a few-shot model of personalized task preferences
within a temporal context that transfers across novel house-
hold environments. We propose a method for generating a
customizable quantity of synthetic data that reflects the vari-
ability in task execution styles seen in the real-world task,
and enables us to train a baseline sequential model that pre-
dicts the next action a participant will take within a cooking
activity. Finally, we present a user study design for evaluating
this method with human participants to determine whether the
personalized model provides guidance that is preferable over
the baseline.

Introduction

In order for assistive agents to effectively operate with hu-
mans, it is important that they are capable of learning in a
manner that can both rapidly adapt and align with the prefer-
ences of unique individuals. Furthermore, to be practical in
the real world, assistive agents should be able to learn from
few initial observations so as minimize burden on the user.
Thus we first describe a technique to learn preferences with-
out labeled human data, and subsequently propose a method
that learns preferences in a data-efficient manner using Few-
Shot Learning. Lastly, we outline a user study design and
empirical evaluation on a household task, and suggest future
directions for this work.

Understanding individual preferences is key to provid-
ing assistance to a diverse population of users, especially in
highly sensitive applications such as caregiving. For exam-
ple, consider a scenario in which a robot must learn when
to intervene if a user performs an unexpected action within
a daily routine. In such a setting, it is not always appropri-
ate to assume that the human performs optimally (Carroll
et al. 2019). However, learning a model for assistance that
incorporates the user’s unique preferences and abilities re-
mains challenging. We focus on household tasks in order to
constrain the definition of task preferences and ground this
work in a natural setting for user assistance.

Household tasks within everyday routines often follow
a deterministic structure, or order, from which few devia-
tions are allowable in order to achieve the goal of the task.
However, there is enough variation within the task struc-
ture to allow for individual preferences to become evident
while still being acceptable. We acknowledge that the no-
tion of human preferences is both task-dependent and broad,
and may include personality-based, experience-based, and
environment-based constraints, among others.

In this study, we specify our definition of preferences as
temporal patterns of behavior, i.e. the predominantly-chosen
order of the user’s actions while performing a step-by-step
task. The primary research question that this aims to address
is Can an individual’s temporal preferences for a house-
hold task be learned from limited observations, such that the
suggestions from a personalized sequential prediction model
are preferable over the baseline?

Thus in this work we propose a study design that ad-
dresses the above by learning user preferences within a
cooking task, where the actions, objects, and ingredients are
chosen from one set and the task has a fixed outcome. Our
long-term goal in for this approach is to build a method
that quickly learns user preferences across different envi-
ronments and evaluate it in a large-scale, real-world study
among a diverse population of users.

Related Work

Our work builds upon prior studies in few-shot learning,
sequential modeling, and preference learning. This section
provides an overview of these areas in relation to this study.

Few-Shot Learning

Few-Shot Learning (FSL) is a paradigm where a pre-trained
model sees a smaller set of examples (called a support set)
to generalize to a new, similar kind of prediction task on
novel data (Vinyals et al. 2016). It is a subset of transfer
learning, where a generalized model is further fine-tuned to
adapt to novel yet in-distribution tasks. These methods are
becoming more widely used because of their ability to learn
in a sample-efficient manner.

Sequential Task Prediction

In (Ravichandar et al. 2016) a Long Short Term Memory
(LSTM) network is the basis for learning the underlying se-



Figure 1: Overview of the study design. Each participant will provide a set of demonstrations offline (left, dotted line), which
will be used to fine-tune a pre-trained model. The resulting personalized model incorporates the participant’s temporal prefer-
ences for executing the task. As the participant performs the task, the personalized model provides the user with personalized
suggestions for what action to perform next (right, solid line) based on the predicted action at the subsequent timestep.

quence of steps to predict a human’s future actions within
a task. While this work addresses sequential action-based
prediction, it relies on a deep network to effectively learn
both the goal of the task and the remainder of the sequence.
In comparison, we assume the task is fixed thus the goal is
known, and approach the problem from the perspective of
learning within a low-data regime.

Adaptive Assistance

Prior studies on adaptation for assistive tasks have primarily
focused on physical assistance, where preferences are ex-
plicitly parametrized (Pignat and Calinon 2017). In contrast,
this work takes advantage of the ability of Hidden Markov
Models to learn latent patterns, which may be representative
of abstract preferences within sequential behaviors. Models
can also be conditioned on latent actions learned from visual
inputs in order to generalize to new objects when provid-
ing assistance (Karamcheti et al. 2021). We focus our study
design towards adapting to latent preferences such that the
method can generalize across different people within a task.

Learning Human Preferences

Current methods of learning human preferences often re-
quire frequent queries in order to reliably adapt, posing a
significant burden to the user. For example, in (Christiano
et al. 2017) the authors demonstrate that it is possible to
learn from human feedback in a sample-efficient manner –
defined as < 1000 bits of feedback – but their method re-
quires continual querying of the human in order to refine the
policy.

Recent work (Ouyang et al. 2022) has shown that it is
possible to fine-tune large pre-trained language models to
generalize to preferences across different user groups, where

the output generated by the fine-tuned model is rated more
highly than that of baseline language models. However, this
approach relies on collecting a large labeled dataset of opti-
mal demonstrations, which is often not feasible in practice.

(Hejna III and Sadigh 2022) treat few-shot preference
learning as a multi-task learning problem in order to bypass
the need to minimize queries. Instead, they take advantage
of the paradigm of shared structure within real-world tasks
to meta-learn reward functions from multi-task data. Under
the assumption that tasks remain within this expected dis-
tribution, they show that their method can rapidly adapt to
new preferences from few queries. However, this work de-
fines a preference as a pairwise comparison between two tra-
jectories for short time horizon tasks, making it difficult to
determine how the method would work in more complex,
longitudinal tasks without continuous feedback.

In contrast, we aim to learn user preferences for sequential
tasks over a longer time horizon. We plan to use advances in
few-shot learning to adapt to the user in a sample-efficient
manner, and apply this method across varied household en-
vironments to evaluate its ability to generalize.

Methods

Dataset and Preprocessing

Our criteria for determining a dataset was that it must con-
tain several instances of one task, rather than a few instances
of many tasks, in order to place the emphasis on learning
user preferences within a single activity. We specifically
looked for datasets that encompass cooking tasks because
recipes typically follow a predictable structure in their num-
ber and order of steps. Despite this, many cooking tasks can
also be completed with sufficient variation such that distinc-
tive temporal preferences may arise without diverging from



the end goal. For example, within a recipe for preparing veg-
etable stew, an individual may prefer to peel all vegetables,
then cut all vegetables, and finally add them to the pot to-
gether; others may prefer to process each ingredient individ-
ually, i.e. first peel/cut/add the carrots, then peel/cut/add the
potatoes, and lastly peel/cut/add the onions.

For these reasons, we chose the 50 Salads Dataset (Stein
and McKenna 2013) as the basis for this study’s task. The
50 Salads Dataset contains RGB-D videos of 25 people
performing 2 instances of the same salad-preparation task,
yielding a total of 50 videos. The videos include times-
tamped annotations, accelerometer data, and depth maps. To
create the initial dataset for this study, we extracted the raw
text annotations for each video and used these to represent
each instance of the task.

A limitation of this dataset is its small size relative to
datasets typically used for training deep models. This prob-
lem is not unique to this domain, as labeled real-world data
is often difficult and expensive to acquire. Thus in the fol-
lowing section we outline our method for addressing this by
developing a generative model of activity sequences to yield
a larger, synthetic dataset for the same task.

Dataset Augmentation

In order to closely reproduce the natural variation seen
within the original dataset and in the real-world population,
we approach the synthetic data generation problem through
the lens of a Markov process. We first create a probability
matrix based on the transition counts between each possi-
ble pair of annotations, or actions, in the sequences of the
original dataset. The transition probability at the (i, j)-th in-
dex represents the probability of performing action j fol-
lowing action i. These counts are then normalized so that
the corresponding probabilities for each annotation sum to
1. Using the action transition matrix, sequences are prob-
abilistically generated via sampling such that they are com-
plete (i.e., achieve the task) and valid. To enforce the validity
of each generated sequence and avoid extraneous repetition,
we use a constraint tree to eliminate implausible transitions
(e.g. mixing an ingredient before it has been added to the
bowl). Our task-based constraint tree allows for incomplete
or invalid sequences to be pruned, while including proba-
bilistically unlikely sequences to account for a broad range
of preference types in the synthetic dataset.

Using this method, we create an augmented dataset con-
taining synthetic sequences for the salad preparation task,
which serves as our augmented training set for the few-shot
learning model. The next section details the analysis of the
dataset to identify patterns of preferences within this task.

Identifying Preference Types

Hidden Markov Models (HMMs) are a statistical method to
represent sequential processes as outputs generated by un-
observable, internal states (Baum and Petrie 1966). Training
an HMM on the augmented dataset of cooking demonstra-
tions seeks to identify underlying temporal processes in the
activity, related to key components of the task that are not
captured by lower-level actions. We trained an HMM using

the hmmlearn library, and subsequently generated hidden
state sequences over the synthetic data.

Using the strategy identification approach described in
(Zhao, Simmons, and Admoni 2022), we train an HMM
on the augmented dataset of demonstrations, which are ac-
tion sequences achieving the cooking task. We obtain a low-
dimensional representation of the demonstrations by com-
puting the Viterbi sequences (Forney 1973). Subsequently,
we determined latent strategy groups, or preference groups,
by applying K-Means clustering to these low-dimensional
hidden state sequences. We used the elbow method with sil-
houette score as the metric to determine the optimal num-
ber of clusters K = 3. After applying K-Means to the data,
we analyzed the sequences within each resulting cluster to
determine latent patterns that could be representative of dis-
crete preference groups. Each cluster corresponds to a latent
preference type (Figure 2).

As previously described, we define preferences within this
study in terms of chosen temporal ordering. Thus we hy-
pothesize that preferences will fall into one of 3 main cate-
gories:

P1: The participant makes the salad dressing and sub-
sequently prepares the core ingredients (peel/chop the
cucumber/lettuce/tomato) before mixing everything
P2: The participant prepares the core ingredients
(peel/chop the cucumber/lettuce/tomato) and subse-
quently makes the salad dressing before mixing ev-
erything
P3: The participant interleaves actions from both
salad dressing preparation and core ingredient prepa-
ration throughout the task

Modeling Sequential Prediction

The base model used in this study is a Long Short Term
Memory (LSTM) network (Hochreiter and Schmidhuber
1997). LSTMs are widely used for sequential modeling
because they employ an attention mechanism that learns
variable-range long-term dependencies by using previous
history to inform the current prediction. Since this study
aims to learn the temporal context within a sequence,
LSTMs are a viable first candidate towards the problem of
predicting the most probable next action within a sequential
household task.

The LSTM will serve as the base model for the few-shot
learning paradigm. We conducted a preliminary exploration
of an LSTM trained on aggregate data compared to individ-
ual support sets. For this initial study, we use a two-layer

Figure 2: The preference type identification and few-shot
learning model are trained offline.



Table 1: Preliminary Comparison of LSTM Training
Paradigms.

Hyperparameters LSTM-

Aggregate

LSTM-

Support Sets

Layers 2 2
Hidden Units 128 128
Learning Rate 0.01 0.01
Epochs 1000 1000
Optimizer Adam Adam
Acc. Train 0.61 0.29
Acc. Test 0.57 0.21

LSTM with 128 hidden units; hyperparameter details are in
Table 1. First, we trained a model, LSTM-Aggregate, on all
demonstrations in the synthetic dataset. Using the same net-
work architecture, we trained an ensemble model, LSTM-
Support Sets, on K = 3 support sets. LSTM-Support Sets
is composed of K = 3 networks, each one is trained sepa-
rately on only the data in the corresponding support set. We
found that this training paradigm for LSTM-Support Sets led
to lower accuracy, likely due to overfitting (Table 1). While
we would like for a model to be more granular to different
preference types, we find that training separate models does
not perform as well as the aggregate model. This indicates
that a model that leverages all training data and is optimized
for adaptation using a few-shot learning approach, such as
Model-Agnostic Meta-Learning (Finn, Abbeel, and Levine
2017), may lead to better predictive accuracy.

Few-Shot Learning

In order to create the support sets, we used our previously-
described clustering approach to partition the hidden state
sequences into K distinct clusters. This mechanism finds
hidden state sequences that are closest in similarity based on
the Euclidean distance metric. Our goal for performing clus-
tering on the hidden state sequences rather than the original
sequences of data was to determine whether latent patterns
would arise from the clusters of hidden states, where each
cluster may indicate a unique task execution style.

Each cluster represents a distinct type of preference for
performing the salad-making task, which constitute the task
set for training an LSTM using a Model-Agnostic Meta-
Learning (MAML) (Finn, Abbeel, and Levine 2017) ap-
proach. Predicting user actions of a certain preference type
is considered an individual task. By using MAML for few-
shot learning, we aim to train a single model that is sensitive
to changes in the input such that few gradient updates can
more substantially correct predictions in the direction of the
gradient loss. We aim to investigate how a model optimized
for rapid adaptation may affect or improve personalized as-
sistance for cooking tasks.

Study Design

Participants

The participants for this study will be recruited from the
Carnegie Mellon University student community. We will re-

cruit 20 individuals, taking care to account for a variety of
demographics in terms of gender identity, field, and age in
order to ensure that user preferences are representative of a
diverse population.

Task Definition

The task that participants will be asked to perform during the
user study is a short cooking routine comprised of two dis-
tinct sub-tasks (e.g. preparing both a salad and a sandwich).
We chose the cooking domain because it illustrates common
household activities with which most participants will be fa-
miliar, while possessing enough variation in steps such that
it is possible for unique temporal preferences to emerge.

Procedure

The study will be conducted across two phases. The partic-
ipant will be given a short tutorial task to familiarize them-
selves with the environment before beginning the study. In
the first phase, participants will be instructed to provide 3
demonstrations of the cooking task in the AI2-THOR house-
hold simulator (Kolve et al. 2017). A personalized model
Mp will be fine-tuned from the demonstrations. In the sec-
ond phase, participants will perform the task (1) once with-
out guidance, (2) once while guided by suggestions from the
baseline model Mb (Assistant 1), and (3) once while receiv-
ing guidance from the personalized model Mp (Assistant 2).
The kitchen environments will be randomly chosen from five
available floor plans in order to minimize familiarity bias.
After interacting with each assistive agent, the participant
will be asked to rate their experience by responding to the
following questions on a 7-point Likert scale:

1. Assistant {1, 2} provided intuitive suggestions.
2. The guidance from Assistant {1, 2} was more relevant to

me than the guidance from Assistant {2, 1}.
3. The task was easier when guided by Assistant {1, 2}.

Experiment Variables

This study will compare assistive agents based on the fol-
lowing two models:

1. Baseline – This model Mb will be trained on the aggre-
gate dataset of generated samples, and will thus reflect a
generic manner of performing the task.

2. Personalized – This model Mp will be fine-tuned on
demonstrations from each participant, and will thus in-
corporate their individual preferences for the task.

Comparing the study participants’ experience, both quan-
titatively and subjectively, will allow us to observe whether a
few-shot personalized model successfully provides measur-
able benefit to the user. The evaluation metrics are outlined
in the following section.

Metrics

Quantitative

• Task efficiency – measured by the duration of task
execution and the number of total actions taken to
complete the task.



Figure 3: Different floor plans for the kitchen environment in the AI2-THOR simulator.

• Accuracy – measured by the number of correct
ground truth predictions.

Qualitative

The qualitative metrics will be collected on a 7-point
Likert scale and will be based off the responses to the
survey questions described in the Procedure section.

• Intuitiveness – To what extent are the suggestions
provided by Mb and Mp easily understood by the
participant?

• Relevance – Compared to receiving no guidance, to
what extent do the suggestions provided by Mb and
Mp help the participant to perform their intended
action towards completing the task?

• Alignment – To what extent is the guidance from
Mp perceived as better than that of Mb; i.e. more
aligned with the user’s task preferences?

Hypotheses

H1: The participants will prefer the suggestions pro-
vided by the personalized model over those from the
baseline model.
H2: The participants who are guided by the person-
alized model will have higher efficacy in performing
the task.
H3: The personalized model will be more accurate
than the baseline model at predicting the participants’
next action.

Proposed Validation and Analysis

We propose to validate the described approach through the
ANOVA test to determine the statistical significance of the
results against the hypotheses. We will evaluate the quantita-
tive performance of our method over the baseline in terms of
both prediction accuracy and participant efficacy. Addition-
ally, we will evaluate the qualitative results by comparing
the participant responses to the questions defined above.

Conclusions and Future Work

In this work we present a study design for implementing and
validating a method that learns temporal preferences from
limited data, and sequentially provides personalized sugges-
tions towards completing the task. We propose an evaluation
on a household activity in a simulated home environment,
including metrics that will indicate the efficacy and subjec-
tive user preference of this approach.

Pending encouraging results from this study, we plan to
next investigate more complex sequential models, such as
pretrained transformer-based architectures which have indi-
cated promising ability to encapsulate real-world semantic
context across a variety of domains. This direction may al-
low us to address another area of future work, which is to
evaluate our approach on long-horizon tasks such as day-
long or multi-day household routines.

Finally, we hope that this work will have downstream ap-
plications towards supporting individuals in leading inde-
pendent lives through autonomous, at-home assistance that
is personalized to their needs.
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