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Abstract
Good posture and form are essential for safe and produc-
tive exercise. Even in physical gym settings, a trainer may
not always be present to monitor an exerciser’s form. Reha-
bilitation therapies as well as fitness workouts can therefore
benefit from recommender systems that can provide real-time
evaluation of exercise form and technique. In this paper, we
present an algorithmic pipeline that can diagnose problems
in exercises technique, and offer corrective recommendations
for exercisers, with high sensitivity and specificity, in real-
time. We use MediaPipe for pose recognition, count exercise
repetitions(reps) using peak prominence detection and use a
learnable physics engine to track motion evolution for each
exercise. A test video is diagnosed based on deviations from
the prototypical learned motion for a particular exercise us-
ing statistical learning. We evaluate our approach on six ex-
ercises to measure its effectiveness and find that it is consid-
erable. These real-time interactive suggestions, counseled via
low-cost equipment like smartphones, will allow exercisers
to rectify potential mistakes in real-time making self-practice
feasible while reducing the risk of workout injuries.

Introduction
Sedentary lifestyles and physical inactivity are prominent
risk factors for cardiovascular diseases worldwide. Evidence
also suggests that physical activity has dipped consider-
ably over time (Ozemek, Lavie, and Rognmo 2019). Exer-
cise improves life expectancy and has an effective therapeu-
tic impact on physical and mental health (Jiménez-Pavón,
Carbonell-Baeza, and Lavie 2020). Assistance in perform-
ing physical exercises (Fletcher et al. 2018) along with
the promotion of the beneficial effects of physical activity
(Lavie et al. 2019), therefore, has a vital role to play in im-
proving health on a global scale.

Expert supervision in performing exercises is a scarce
resource in the physical world. Even those under the su-
pervision of a personal trainer need assistance while do-
ing self-practice. Consequently, digital assistive technolo-
gies have emerged, playing an eminent role in improving
accessibility to expert supervision for exercises. In gym set-
tings, pose estimation has been extensively used to detect
and assist in exercises (Ng 2020; Khurana et al. 2018). Sim-
ilarly, many other projects have developed approaches for
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exercise recognition and repetition counting to benefit per-
sonal training (Chapron et al. 2018; Alatiah and Chen 2020;
Spina et al. 2013).

Sensor-based methods (Velloso et al. 2013; Spina et al.
2013) have been prolifically used for pose assessment focus-
ing on exercise detection (Chang, Chen, and Canny 2007;
Šeketa et al. 2015; Seeger, Buchmann, and Van Laerhoven
2011), rep counting (Soro et al. 2019; Spina et al. 2013),
incorrect pose diagnosis (Yurtman and Barshan 2014; Gig-
gins, Sweeney, and Caulfield 2014; Lee et al. 2020; Kowsar
et al. 2016) and recommendations (Zhao et al. 2014; Velloso
et al. 2013; Spina et al. 2013). However, sensors can be ob-
trusive, expensive, and difficult to calibrate correctly, and so
may be best suited for high-performance settings (Khurana
et al. 2018). More appropriate for less intensive settings,
vision-based methods (Wang et al. 2019; Liu and Chu 2020;
Gharasuie, Jennings, and Jain 2021; Wang, Chen, and Duan
2021) have recently gained prominence due to advancement
in deep learning techniques and mobile camera technology.
This direction of research is very promising because it al-
lows for the possibility of entirely sensor-free tracking of
exercise performance benefiting a sizable audience.

At present, however, such proposals face considerable dif-
ficulties. Most vision-based approaches to exercise tracking
work with predetermined heuristic parameters which vary
across exercises and participants, requiring considerable
hand-crafting (Liu and Chu 2020; Chen and Yang 2020).
While vision-based approaches to exercise type recognition
and rep-counting are plentiful, approaches that seek to track
exercise form are limited to simple upper body exercises
with relatively little body movement (Liu and Chu 2020;
Kowsar et al. 2016; Chen and Yang 2020). Further, most
such approaches offer exercise diagnoses retrospectively af-
ter processing entire recorded exercise sessions (Khurana
et al. 2018; Soro et al. 2019).

We identify the over-general nature of the deep learn-
ing architectures used in vision-based exercise tracking
pipelines as a key problem blocking progress in this area.
Rather than use generic neural network architectures, we
propose using a specific variety of neural networks, specif-
ically designed to learn relationships between physical ob-
jects, as the base inference engine in such recommender
systems. Using one such architecture - Interaction Net-
work (Battaglia et al. 2016) - this paper describes a novel



Figure 1: Example showing working of Interaction Network. b1,b2 are input to relation-centric function and c1,c2,c3 are input
to object-centric function

recommender system for real-time exercise form correction.
We show that our solution works with very high sensitivity
and specificity for various full-body and upper-body exer-
cises and provides recommendations early enough for the
exerciser to make corrections.

We explain the working of our physics inference model
in Physics prediction using Interaction Network section and
the components of our recommender system in the Recom-
mending Pose Corrections section. The value of our sys-
tem is demonstrated through experiments on different ex-
ercises in the Empirical Evaluation section. Finally, we con-
clude by placing our proposal within the context of existing
approaches towards exercise-relevant prediction and recom-
mender systems, and identifying directions for future work,
in the Discussion section.

Physics prediction using Interaction Network
Interaction Network (also referred to as IN) (Battaglia et al.
2016) is a general-purpose physics engine simulator that
can reason about objects and their relationships using Graph
Networks. The graph nodes represent the objects, and the
edges represent their relations. The IN (Figure 1) takes the
properties of the objects (mass, shape, position, velocity)
and their relational properties (spring constant, restitution
coefficient, internal forces) at the current time and predicts
the next step dynamics. All this information is passed as
matrices. The standard architecture builds upon a relation-
centric function fR and an object-centric function fO. The
fR takes objects, and their relation attributes as input and
predicts the effect of these interactions. The fO predicts the
next step dynamics for an object using its current state and
aggregation of all the interaction effects it receives. They
can accurately predict object dynamics over long trajecto-
ries. For more information, readers are requested to refer to
the original IN paper (Battaglia et al. 2016).

For our use, we exploit the IN’s rigid-body dynamics
learning capability to model human biomechanical signals.
Our graph network has NO number of selected body land-
marks (see Table 1 for some exercise-specific examples) and
NR relations between them. Rr and Rs are binary receiver
and sender matrices of size NO x NR which index kinematic
relationships between different body landmarks various ex-
ercises. DS is the dimension of object attributes. O is an
object matrix of size DS x NO. OS is a matrix of sender

landmarks of size DS x NR. Similarly, OR is a matrix of
receiver landmarks of size DS x NR and Ra is matrix of
relation attributes of size DR x NR.

We feed sender-receiver landmark properties, along with
their analogous relational attributes to the relation-centric
function fR, which predicts the associated effect matrix E
of size DE x NR where DE is the effect dimension.

E = fR(OS ;OR;Ra) where ; means concatenation

Product of the effect matrix with the binary Receiver Matrix
yields Ē = ERT

r assimilating the net effects on each receiv-
ing objects in its columns. This, along with the object matrix
O, is fed to the object centric function fO to predict the next
step dynamics P for each landmark.

P = fO(O; Ē)

Recommending Pose Corrections
We first outline the overall methodology of our pipeline,
followed by a detailed description of its sub-components.
To begin with, we feed a recorded or a live video to our
pipeline, which predicts frame by frame keypoints for 25
joints through Mediapipe Pose detection API (Bazarevsky
et al. 2020). Depending on motion evolution, we select pre-
determined exercise specific landmark points (Table 1) fol-
lowed by normalization and smoothing for physics mod-
elling. The ML model predicts the motion rollouts for all
the landmarks with visibility of only the initial rep state. Us-
ing these predictions, we calculate the Mean Squared Er-
ror (MSE) for individual landmarks. These errors are trans-
formed to the frequency domain for further processing, as
described in subsequent sections. Essentially, we use fre-
quency domain information from the MSE signals to clas-
sify exercise reps as either correct or incorrect (in one of the
multiple predefined modes of failure) using a Random For-
est multi-class classifier.

Rep Counting using Peak Prominence
Each exercise consists of cyclic movements, which we ex-
ploit for repetition segregation. We track a landmark and
find peaks in its periodic displacement plot. All peaks found
need not necessarily be one separating a rep from another. To
detect actual peaks, we find peaks’ importance using peak
prominence and use its standard deviation as a cutoff for our



Landmarks
Squats Nose Left Hip Right Hip Left Knee Right Knee -
Sit-ups Nose Shoulder Hip Knee - -
Push-ups Shoulder Hand Hip Toe - -
Lunges Shoulder Hip Front Knee Back Knee Back Toe Front Heel

Table 1: Body Landmarks for four full body exercises

Figure 2: Peak prominence plot showing peaks in land-
mark’s vertical displacement time series for rep counting.
Timestamps are on X-axis and vertical displacement on y.

high pass filter. In real-life scenarios, discontinuous exercise
reps are common as performers feel tired and distracted,
many times having considerable break between successive
reps. We remove that extraneous motion data between reps
by evaluating a cutoff. Displacement values above the cutoff
mark the start and stop of a valid rep. Figure 2 shows the
result of rep counting for a single lunges video.

cutoff = peak − (prominence ∗ 0.1)

Preprocessing
MediaPipe Pose Detection API provides 3D positional time
series data for 25 body landmarks for each exercise. We
transform these coordinates for unidirectional facing and
use the resulting view along with the landmark’s displace-
ment amplitude to fix the representative landmarks for
each exercise. These representative landmarks remain fixed
for all computations of the exercise. We apply Locally
Weighted Scatterplot Smoothing (LOWESS) to each time
series (Cleveland 1981) to reduce noise, discard reps with
significant pose estimation errors and Min-Max normalize
the x,y coordinates to induce translational invariance. This
preprocessing stage outputs stick figure representations for
each exercise rep (Figure 3).

Learning exercise dynamics
We represent body landmarks as nodes of a graph and the
connections between them as the edges. There are two edges

Figure 3: Push-ups - stick figure and corresponding video
frame.

between each pair of joints, in the forward and backward
direction. We consider only position and velocity as object
attributes. For the relational attributes, we feed the joint to
joint distances and angles, with a value of plus or minus one
indicating the forward or the backward edge direction.

The objects’ current position, velocity, and the relational-
attribute matrix are fed to the IN to predict the next step’s
position and velocity using only the correct rep videos such
that the model learns the physics of the exercise. For a test
exercise rep, we feed the initial state of the representative
landmarks as input and let the model predict trajectory roll-
outs while repeatedly feeding actual relational attributes

Error Analysis and Rep Classification
The MSE time series emitted by the Interaction Network in-
forms the next stage of our pipeline. We hypothesize that our
physics engine predicts the correct method of performing an
exercise, such that considerable deviation from it would hint
at an incorrect rep. Further, the specific combination of MSE
from different body components would hint at the specific
way in which the exerciser is failing to perform the rep cor-
rectly.

To extract this information, we transform the MSE time
series from all the representative landmarks to the frequency
domain using the discrete-time Fourier transform (DTFT).
DTFT provides magnitude and phase values for each time
series. Conversion to the frequency domain helps in two
ways. It gives a fixed-sized representation of the variable-
length time series. It also helps to extract the features of the



Figure 4: DTFT representations of error signature of different squats labels. Note how the phase plots for the incorrect squats
differ from each other as well as from a correct squat systematically.

time series. This output of the DTFT, called the error sig-
nature (Figure 4), is a vector representation of an exercise
rep of variable duration. For our case, we take the principal
11 amplitudes and the corresponding phase values to build
the rep error signature. At the final stage of our pipeline, we
use a Random Forest classifier for classification, operated in
a multi-class classification setting with the error signatures
from correct and incorrect classes.

Real Time Assessment
The users record themselves doing an exercise through our
mobile application. This camera feed is provided to the Me-
diaPipe Android API, which outputs the coordinates for
body landmarks as a time series. These time series consti-
tute of multiple reps. As a rep is identified, its data is sent
to the server where our pipeline classifies it as correct or
diagnoses it as a mistake of a particular type. A corrective
message specific to the estimated diagnosis is displayed to
the user through our application. For exercisers operating at
normal tempo, this feedback arrives before their next rep is
halfway complete.

Empirical Evaluation
Data
For full body exercises, we used a proprietary dataset ob-
tained from E-Trainer Analytics Wizard Pvt. Ltd to conduct
the evaluations reported in this paper. This dataset contains
the front and side view of individuals doing four exercises
- squats, push-ups, lunges and sit-ups. There is one correct
class for each exercise, whereas incorrectly done exercises
could belong to multiple classes.Incorrect videos were anno-
tated with corrective suggestions by expert physical trainers.
Each video consists of a single person doing multiple reps of
an exercise as the central object in the frame. The total data
consists of at least 150 reps for each exercise performed by
seven exercisers.

We used a train test split of 60%-40% for training the
classifier on incorrect classes. For the IN and correct class

classification, we chose either 60%-40% or 80%-20% splits
depending on the count of correct reps to maintain class bal-
ance among all the correct-incorrect classes.

To compare our approach against existing models of pos-
ture and form prediction, we also experimented with a pub-
licly available dataset (Ng 2020), which contains annotated
data for three exercises - front raise, bicep curl, and shoulder
press. We show results for - shoulder press and front raise,
as they easily integrate with our existing pipeline.

Methods

Our IN input consists of x, y position and velocity data of
pre-selected landmarks and two top and bottom stationary
reference points for all the experiments. The choice of land-
marks depended on our understanding of the biomechanics
of each exercise. Velocity is approximated as the difference
between current and previous coordinates. Both the refer-
ence points have x coordinate 0.5 and y values as 0 and 1.

Our physics learning engine has two feed-forward neu-
ral networks - the relation-centric model fR and the object-
centric model fO. fR consists of 4 layers, 256 neurons each,
with ReLU activation and fO consists of 3 layers of 256 di-
mensions and ReLU activation. The output layer for each
model had linear activation and .5 dropout was applied to
each hidden layer. These networks were trained for 2500
epochs with early stopping. We optimized the network pa-
rameters using AdamW optimizer (Loshchilov and Hutter
2017) with 1cycle learning rate policy (Smith 2018) and
a learning rate of 0.0003. This physics engine emits MSE
times series for all the referenced landmarks. These are
transformed into DTFT based error signatures. Our classi-
fier categorizes these error signatures of each rep into correct
or one of the incorrect classes. We tested different classi-
fiers and found Random Forest to be most consistent across
all the exercises. All the classifiers’ hyperparameters were
tuned using randomized search cross validation.



Figure 5: Average rollout prediction errors over exercise reps(MSE) for Baseline Models and Interaction Network. Even though
MLP have good F1 scores (Table 3) in some cases, high prediction error makes their performance unreliable.

Baseline Comparisons
Looking at the previous works (Liu and Chu 2020; Chen
and Yang 2020), we identify principle techniques applied for
posture recommendation. We compare our physics learning
pipeline against these well-known architectures by substitut-
ing them against the IN. Among available learnable dynam-
ics predictors, we exploit Interaction Networks for their in-
terpretability and simplicity. Our pipeline can also function
with other motion predictors, to the degree they can accu-
rately mimic the dynamics of the exercise. To test this hy-
pothesis, we evaluate our model against several baselines.

Multi layer perceptron (MLP) Baseline: The MLP
Baseline, fed with the same input data as a flattened vector,
predicts the same future state dynamics as the IN. It has three
256-length hidden layers with Rectified Linear Unit (ReLU)
activation. In principle, it has all the information available to
learn the interaction dynamics, necessitating assimilation of
relation indices implicitly without any scene factorization.

Recurrent Neural Network (RNN) and Gated Recur-
rent Unit (GRU) Baselines: The sequential modeling ca-
pacity of these networks equip them to model posture evolu-
tion. Both RNN and GRU architectures have three recurrent
units with three features in the hidden state. They take the
same flattened input vector as the MLP baseline. The hidden
state output is fed to a fully connected layer to predict fu-
ture dynamics. GRU is a more recent type of RNN capable
of modeling longer-term dependencies, which can improve
performance for many tasks.

Apart from the above deep learning based methods, sev-
eral heuristics based methods have been traditionally used
for exercise diagnosis. We compare our pipeline against Ng
(2020) and Chen and Yang (2020), which utilize geometric
thresholds, over features extracted from body landmarks, to
detect incongruity in exercise reps. We also tested for varia-
tions of IN to estimate factors affecting its performance. The
models below partly modify the IN architecture or its input
for comparison.

Attribute Hidden IN: This model is an ablation modifi-
cation of the IN. It has the same architecture, but the relation
attribute matrix is a null matrix. It has enough information to
calculate interaction attributes from position data, demand-
ing them to calculate complex distance and inclination func-
tions.

Independent object IN: This network has the relation-
centric component fR removed (The interaction effect vec-

tor is set to 0). It cannot model object-object interactions but
can infer repeated cyclic motions of exercise.

Fully Connected(FC) and Global Connection(GC) IN:
We also explore the variations of object-object connectiv-
ity to model different levels of interactions. FC IN connects
each joint with every other joint for all the joints of a given
exercise. It has the same capacity as the Interaction Network
but takes additional irrelevant input. For GC IN, apart from
the local relation dynamics, all the landmark points are con-
nected to the top and bottom stationary points facilitating
modelling of both local and global interactions, which may
improve information propagation.

Results
We evaluate our diagnostic system on four vertical motion
full body exercises (squats, push-ups, sit-ups, and lunges)
and two upper body exercises (shoulder press and front
raise) on three criteria: Rep Counting , Posture diagnosis,
and Real-time prediction. Our peak-prominence based algo-
rithm counted all reps in the full-body exercises with 100%
accuracy. For each rep detected, we measured recommen-
dation accuracy using weighted F1 scores in a multi-class
classification setting.

Posture diagnosis Our results show that a pipeline en-
dowed with physics learning capability can effectively dif-
ferentiate between correct and incorrect exercise reps (Table
2 and Table 3). Physics-based design either beats all other
baselines or gives a comparable performance. All the mod-
els perform equally well for fewer incorrect classes (e.g., Sit-
ups, Shoulder Press) or for trivial variations in joints’ motion
range (e.g., Push-ups) i.e., when the exercise is relatively
simple. Front Raise shows the most performance improve-
ment (Table 2), which also has the most incorrect classes

Model Shoulder Press* Front Raise
Ng 0.90 0.77
Pose Trainer 0.49 0.76
MLP 0.99 ± 0.01 0.84 ± 0.04
RNN 0.99 ± .01 0.79 ± .05
GRU 0.95 ± .06 .80 ± .04
IN .98 ± 0.01 0.88 ± 0.03

Table 2: Baseline comparisons for two upper body exer-
cises(*Shoulder Press analysis for two incorrect classes).



Model Squats Push-ups Lunges Sit-ups
MLP 0.91 ± 0.02 0.98 ± 0.03 0.95 ± 0.03 0.99 ± 0.01
RNN 0.85 ± 0.04 0.98 ± 0.01 0.94 ± 0.01 0.98 ± 0.02
GRU 0.87 ± 0.03 0.98 ± 0.01 0.93 ± 0.02 0.94 ± 0.04
IN 0.94 ± 0.02 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01

Table 3: Baseline comparisons for four full body exercises (left). Classification results reported using weighted F1 score with
standard deviations over five train-test runs.

Front Raise NN RNN GRU MLP
2 Classes 0.96 ± 0.03 0.93 ± 0.02 0.93 ± 0.06 0.96 ± 0.03
4 Classes 0.91 ± 0.03 0.90 ± 0.01 0.89 ± 0.05 0.91 ± 0.01
6 Classes 0.82 ± 0.04 0.79 ± 0.05 0.80 ± 0.04 .88 ± 0.03

Table 4: Baseline Comparison with exercise Complexity for Front Raise. Complexity of Classification increases with number
of classes in a multi class classification setting. Methods that do not model exercise dynamics show significant performance
drop as the number of classes increases.

(five) among all the tested exercises.
Since classification only indirectly measures perfor-

mance, we also analyze MSE predictions(Figure 5). In all
cases, a physics learning engine best describes motion dy-
namics. Surprisingly, MLP-based pipeline works well for
multi-class classification, but their dynamics also signifi-
cantly deviates from ground truth. Higher prediction errors
cause more variation in its results, especially when the dy-
namics become complex and the number of classes increases
(Table 4). Even for an ill-suited model, classification results
can be good if the error signatures are separable, but such
arbitrary performance gains do not scale well as the com-
plexity of exercise increases.

To see what part of IN results in performance improve-
ment, we perform an ablation study modifying several of its
parts. The MSE predictions demonstrate (Figure 6) the util-
ity of relational attributes for physics prediction. Variations
in joint-to-joint modelling work equivalently well for the
modifications we tried. Global connections support faster in-
formation propagation ensuing slightly better dynamics pre-
diction but Stochastic interactions, with many intrinsic and
extrinsic factors affecting the exercise (like fatigue, motiva-
tion, body pain, and distractions ), contain the expected per-
formance gain. Many hidden factors like joint-to-joint force
and muscle tension also prevent the model from exploiting
global propagation.

The Fully Connected IN model has more unnecessary
information in irrelevant relations. Still, its performance is
comparable, presumably because the IN learns to weigh the
importance of critical relations for each exercise. This can
also mitigate one of the limitations of our model i.e., obliga-
tion to an explicit relational matrix, provided that the pose
estimation is accurate enough to detect all body landmarks.
The independent object IN underperforms (Figure 6), owing
to its incapability of modeling interactions.

Diagnosis latency In terms of latency, we find that the
evaluation for the last rep is shown to the user approximately
by the time the ongoing rep is half complete prompting the

user to correct any mistakes in technique without much de-
lay (see Table 5 for a quantitative summary of the latency
for four full-body exercises across multiple videos and Ta-
ble 6 for examples of real-time recommendations from our
system).

Discussion
Self-training will become more prominent as people find
less and less time to follow a dedicated gym routine. Our
system works to help such users promote healthy living
without compromising their daily activities. Our recom-
mender system accurately detects whether a person is cor-
rectly performing an exercise or not, and offers real-time
recommendations encouraging users to correct their exercise
form. High F1 scores for all the six tested exercises support
our basic contention that using a learnable physics engine
for system inference permits high generalizability across a
variety of exercises.

Our interactive system focuses on rep counting and di-
agnosis, assuming that the exercise performed is known (or
is easily knowable). For instance, Moran et al. (2022) used
MediaPipe Pose detection API (Bazarevsky et al. 2020) for
pose recognition to detect the type of exercise someone is
performing in real-time, a capability that could easily inform
exercise type in our pipeline.

Several recently proposed systems (Ng 2020; Vyas 2019;
Wang, Chen, and Duan 2021) have used state-of-the-art pose
estimation techniques to craft heuristic joint angle thresholds
for pose correction or feedback. Recently, real-time pose di-
agnosis was done by Alatiah and Chen (2020) using pre-

Exercise Mean(sec) Standard deviation(sec)
Squats 0.55 0.13
Sit-ups 0.39 0.07
Push-ups 0.36 0.11
Lunges 0.54 0.09

Table 5: Lag time(seconds) for new rep recognition.



Figure 6: Average rollout prediction error over exercise reps(MSE) for Ablation Models and Interaction Network. Models
without relation information experience significant drop in performance for dynamics prediction.

Data type Link
IN rollouts https://tinyurl.com/rolloutsDemo
Exercise Demo https://tinyurl.com/realTimeDemo

Table 6: Video Simulations of Interaction Network predic-
tions rolled out over time and of exercise sessions diagnosed
using our system in real-time.

calculated parameters like a range of motion and major joint
angles. Similarly, Ying et al. (2021) developed a personal
training system that compares the real-time input with the
features of pre-stored correct exercises to detect incorrect
moves. In such systems, only binary correct/incorrect feed-
back is offered rather than corrective recommendations.

More granular diagnoses are possible in a system re-
cently proposed by Liu and Chu (2020), who designed three
domain-based joint angle indicators, modeled each rep us-
ing an RNN to learn these indicators and visually indi-
cate the mistake location for two upper body dumbbell ex-
ercises. For these two simple exercises, they get classifi-
cation accuracy above 90%. However, their approach re-
quires per frame annotation for training. Similarly, Ghara-
suie, Jennings, and Jain (2021) developed a low-cost sys-
tem using AlphaPose(Fang et al. 2017) based arm angles
for upper-body exercises to count reps using smartphone
cameras. They trained their system on data recorded in the
gym and calculated various exercise phase parameters to es-
timate user fatigue levels indirectly. While such heuristic
joint-angle based methods provide helpful textual feedback
in some instances, they tend to work well only for isolation
arm exercises (where only a few joints are involved) and do
not achieve significant diagnostic accuracy without exten-
sive frame-level annotation. Our system, in contrast, with a
more sophisticated inference engine, works well for com-
pound exercises using only video-level annotation.

Closer technically to our approach, Pose Trainer (Chen
and Yang 2020) uses OpenPose (Cao et al. 2021) based pose
estimation on dumbbell exercises along with Dynamic Time
Warping against template moves for rep diagnosis. They use
angular heuristics for exercise improvement feedback. Sim-
ilarly, AI Coach (Wang et al. 2019) analyses sports trajec-
tories based on angles between joint key points to match
against bad poses pre-annotated by experts. In these sys-
tems, for all identified bad pose frames, an exemplar-based
video is recommended by the system. This is in contrast with

our system, wherein holistic, body-focused textual feedback
is offered to users.

Thus, to summarize, this paper presents a novel system
for recommending form corrections to people performing
rep-based exercises in real-time with high precision. We in-
troduce the use of learnable physics engines to model body
physics, a task for which they are very well-suited. The
success of our physics model permits downstream classi-
fiers to accurately diagnose modes of failure of exercises us-
ing differential prediction error residuals between the model
prediction and actual observations. Empirical evaluations
show that our system diagnoses defective techniques in com-
plex full-body exercises with high sensitivity and specificity.
We expect the adoption of such interactive systems to help
healthcare providers scale up access to supervised physical
exercise.

We conclude with a brief exploration of the limitations
of our system, and possible directions for future work. The
most critical technical limitation of the present system is its
reliance on pre-defined relational attributes for each exer-
cise’s Interaction Network. These attributes depend on the
nature of human biomechanics and must be decided be-
forehand. Learning relational attributes from data could im-
prove this performance even further, a clear direction for fu-
ture work. Our system is currently tested only for exercises
with significant vertical periodicity, an artifact of our peak-
prominence based rep-counting scheme, though vertical pe-
riodicity also exists in many other exercises. Replacing this
with a more sophisticated rep-counting method could extend
our system’s capabilities to a more general set of exercises.
In particular, given the known diagnostic value of gait anal-
ysis in predicting health outcomes for the elderly (Cesari
et al. 2005; Verghese et al. 2009), extending this system’s
digital diagnostic capabilities to monitoring and diagnosing
gait-related problems presents a very promising direction for
future work.
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