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Abstract

For service robots to become general-purpose in everyday
household environments, they need not only a large library
of primitive skills, but also the ability to quickly learn novel
tasks specified by users. Fine-tuning neural networks on a va-
riety of downstream tasks has been successful in many vision
and language domains, but research is still limited on trans-
fer learning between diverse long-horizon tasks. We propose
that, compared to reinforcement learning for a new household
activity from scratch, home robots can benefit from transfer-
ring the value and policy networks trained for similar tasks.
We evaluate this idea in the BEHAVIOR simulation bench-
mark which includes a large number of household activities
and a set of action primitives. For easy mapping between state
spaces of different tasks, we provide a text-based representa-
tion and leverage language models to produce a common em-
bedding space. The results show that the selection of similar
source activities can be informed by the semantic similarity
of state and goal descriptions with the target task. We further
analyze the results and discuss ways to overcome the problem
of catastrophic forgetting.

Introduction
Domestic service robots have been envisioned to help in a
variety of household activities. Imagine a single robot that
can be versatile enough from tidying up the rooms to play-
ing with kids. Such a robot not only requires the sensing,
navigation, and manipulation capabilities, but also needs to
intelligently combine these skills to perform each activity as
requested by the users.

Since every home is different, a simple library of pre-
programmed tasks will hardly serve the purpose. For ex-
ample, when a user wants to clean the kitchen cupboard,
the specific goal conditions they would like to achieve will
depend on their personal preferences and constraints of the
environment. Does the robot re-arrange the dishes in a cer-
tain pattern? Does the robot dust the outside of the cup-
board? The reality is that there could be an infinite number
of combinations of goals, and a robot will most likely have
to learn to solve new goals after it is deployed in the individ-
ual homes.

In this paper, we study the problem of learning novel
user-specified household activities for a service robot that
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is shipped with pre-trained policies for a set of standard ac-
tivities. We propose to learn the new activity by transferring
from the policy of a similar activity. Our hypothesis is that
the transfer can be more efficient than learning the new activ-
ity from scratch if their initial state and goal conditions are
similar. Intuitively, a robot should be able to learn putting
away cleaned dishes efficiently if it has a good policy for
cleaning kitchen cupboard. Further, we can measure activity
similarities by leveraging language models to embed their
state and goal descriptions.

We test our hypothesis using the BEHAVIOR bench-
mark (Srivastava et al. 2021). BEHAVIOR simulates a large
number of household activities for an embodied AI to learn.
We first present a reinforcement learning (RL) approach to
solve a subset of activities from scratch. The approach lever-
ages text descriptions of the agent’s current state and goal to
allow the policies to operate in a common state space. We
then initialize the learner with each of the pretrained policies
when training it on a new activity, and evaluate the hypothe-
sis that the transfer performance corresponds to the semantic
similarity between the activity text descriptions. We present
some initial results to show the potential of this approach for
enabling versatile and adaptive home robots.

Related Work
Transfer learning leverages the knowledge learned in a
source domain to improve the performance of a learner on
the target domain. Transfer learning in reinforcement learn-
ing has been studied to transfer knowledge between different
Markov Decision Processes (MDPs) (Zhu, Lin, and Zhou
2021; Taylor and Stone 2009). While many approaches are
evaluated in tasks with the same high-level goal and only
different configurations in Mujoco, navigation, and Atari do-
mains (Barreto et al. 2017; Schaul et al. 2015), a few re-
cent transfer learning approaches have demonstrated posi-
tive transfer between distinct Atari games (Rusu et al. 2016;
Fernando et al. 2017). Soemers et al. introduces an approach
that transfers policy and value networks between distinct
board games that have different action spaces (Soemers et al.
2021). Encouraged by these successes, we propose to trans-
fer RL policies among distinct embodied household activi-
ties which require high-level long-horizon reasoning about a
large variety of goal conditions. Further, this work proposes
to use language models on activity descriptions to inform the



selection of source domains.
BEHAVIOR is a benchmark where embodied AI so-

lutions are evaluated on household activities in a realis-
tic physics simulation. The activities are selected from the
American Time Use Survey to reflect the real distribution of
household chores. There has been very little success using
RL to solve BEHAVIOR in its original setting (Srivastava
et al. 2021). In this paper, the method of providing the text-
based, fully observable state representation is most similar
to the work done by Shridhar et al. for the ALFRED bench-
mark (Shridhar et al. 2021).

Approach
Our approach consists of two steps. In the first part, we in-
troduce a text-based state representation for a RL agent to
efficiently learn a set of diverse BEHAVIOR activities from
scratch. The state representation is also in a common embed-
ding space to allow easy knowledge transfer to other activi-
ties. In the second part, we introduce how these pre-trained
policies are re-used for learning new activities, and test our
hypothesis that the semantic similarity between activity de-
scriptions can be used to predict transfer performances.

Learning Single Activities
We introduce a different RL formulation from the original
one in the BEHAVIOR benchmark, in order to speed up
learning these activities using standard RL algorithms.

Text-Based State and Goal Representation Given the
low RL performance in the original setting of BEHAVIOR,
we take a similar approach to ALFWORLD (Shridhar et al.
2021) by providing full observability of the logical state
in the form of language. The simulator backbone of BE-
HAVIOR extracts logical predicates that describe the current
states and relations of all objects in the world. We filter the
logical predicates to the ones relevant to the activity, and use
a template to generate text descriptions of the logical state.
Similarly, the goal conditions are represented with text de-
scriptions. Figure 1 shows the initial state for one instance
of the cleaning kitchen cupboard activity. Figure 2 shows
the goal definition of the cleaning kitchen cupboard activity.
There are two goals: 1) dust every cabinet and 2) move all
cups to one cabinet and all bowls to the other. For the exam-
ple initial state, there are two ways to ground the second goal
based on how the cups and bowls are assigned to cabinets,
and each grounding leads to a distinct set of subgoals.

Action Primitives The action space includes a set of dis-
crete action primitives implemented in BEHAVIOR: GRASP,
TOGGLE ON, TOGGLE OFF, OPEN, CLOSE, PLACE INSIDE,
PLACE ON TOP. Each action primitive takes a parameter that
refers to an object. For example, PLACE INSIDE(cabinet 0)
means the robot will put the object currently in its gripper
into the cabinet.

Problem Formulation We formulate a BEHAVIOR ac-
tivity as a Markov Decision Process denoted by the tuple
M = (S,A,P, R). S is the space that consists of tok-
enized state and goal descriptions. A is the space of action

top cabinet 47 is dusty. top cabinet 47 is next to cup 1. bot-
tom cabinet 41 is dusty. bottom cabinet 41 is on top cup 0.
bottom cabinet 41 is next to cup 0. bottom cabinet 41 is
next to bowl 1. countertop 26 is under bath towel 0. coun-
tertop 26 is in reach of robot. countertop 26 is in same room
as robot. bath towel 0 is on top countertop 26. bath towel 0
is in reach of robot. soap 0 is on top countertop 26.
soap 0 is in reach of robot. bowl 0 is on top counter-
top 26. bowl 0 is in reach of robot. bowl 1 is inside
bottom cabinet 41. bowl 1 is next to bottom cabinet 41.
cup 0 is inside bottom cabinet 41. cup 0 is next to bot-
tom cabinet 41. cup 1 is inside top cabinet 47. cup 1 is next
to top cabinet 47. room floor kitchen 0 is in reach of robot.
room floor kitchen 0 is in field of view of robot.

Figure 1: An example initial state of cleaning kitchen cup-
board

For every cabinet, the following is NOT true:
the cabinet is dusty.
For at least one cabinet, for every bowl, the bowl is inside
the cabinet, and the following is NOT true:
cup1 is inside the cabinet.
For at least one cabinet, for every cup, the cup is inside the
cabinet, and the following is NOT true:
bowl1 is inside the cabinet.

Figure 2: An example goal definition of cleaning kitchen
cupboard

primitives, parameterized by the objects relevant to the ac-
tivity. P(·|s, a) is the unknown stochastic transition prob-
abilities. R : S × A × S → R is the reward function.
Given the grounded subgoals of the activity, R is defined
as follows: if a is not executable at s, R(s, a, s′) = −1; oth-
erwise, let g(s) be the number of subgoals satisfied in the
state s, R(s, a, s′) = g(s′)−g(s)

total number of subgoals · c where c

is a large constant. The reward function penalizes choosing
action primitives that are not executable, such as TOGGLE
OFF(cup 0), and generously rewards achieving new sub-
goals. The objective is to learn a policy π : S → A that
maximizes the expected total reward.

Actor-Critic Policy The policy can be trained by pol-
icy gradient methods such as PPO (Schulman et al. 2017).
Figure 3 shows the actor-critic architecture. We use a pre-
trained DistilBert model (Sanh et al. 2020) to tokenize and
encode the input text. The actor network outputs a tuple of
the action primitive index and the object index.

Transfer Learning
Since the aim of this work is not to achieve top performances
on BEHAVIOR, but rather to explore the connection be-
tween transfer performance and activity similarity, we adopt
a straightforward method to re-use pre-trained policies and
compare the learning curves.



Figure 3: Actor-critic network architecture for learning one
BEHAVIOR activity.

State and Action Mappings Since S is a space of tok-
enized state and goal descriptions, the state space is common
for all activities. However, the action primitives are param-
eterized by the objects in the scene, so the action space can
have different sizes. To re-use a policy for a new activity, we
copy all the weights in the network (Figure 3) except for the
actor output layer. Then we resize the actor output layer to
match the new action space and randomly initialize it before
training.

Semantic Similarity Given a new activity with an initial
state and a set of goal conditions, the text-based state and
goal representation constructed for the MDP formulation is
also a unique description of this activity. We use the pre-
trained SimCSE model (Gao, Yao, and Chen 2022) to embed
activity descriptions, and compute the consine similarity be-
tween the embeddings of any pair of activities.

Transfer Metric We evaluate the transfer performance of
each pair of activities by the transfer ratio (or transfer score)
metric (Taylor and Stone 2009; Rusu et al. 2016). The trans-
fer ratio measures the ratio of the total reward given to the
transfer learner and the total reward given to the non-transfer
learner after a certain number of training steps. It can be
computed by the ratio of the area under the transfer learning
curve over the area under the non-transfer learning curve.

Experiments
We choose to study 7 activities from BEHAVIOR: storing
food, cleaning kitchen cupboard, putting away Halloween
decorations, collect misplaced items, putting away cleaned
dishes, locking every window, cleaning microwave oven.

The policies are trained with the PPO algorithm as imple-
mented in the stable-baselines3 library (Raffin et al. 2021).
An episode terminates when all the subgoals are achieved
or the maximum number of steps (64) has been taken. The
hyperparameter c in the reward function is set to 200. As
a result, the highest total reward of an episode is 200, i.e.
achieving all subgoals without any penalty. The lowest total

Figure 4: Semantic similarities between source and target
activities.

reward is -64, i.e. always executing invalid actions.

Training from Scratch To obtain a policy for each activ-
ity, we train for 512 episodes and take the top performing
policy out of 3 runs. Table 1 shows the mean reward per
episode achieved at the end of training by the top policy for
each activity. Note that there is a wide gap between how
well these activities are solved by our policies. The policies
for locking every window and cleaning microwave oven are
near optimal, whereas the policy for cleaning kitchen cup-
board never manages to achieve all subgoals during training.
This difference is due to the solution length and the stochas-
ticity of executing the action primitives. Some activities re-
quire executing more than 10 actions in the correct order,
and some actions (e.g. grasp) have a low success rate in pro-
ducing the desired effects. The uncertain action effects re-
flect the challenge for real robots, since the task-level policy
should know how to recover when there are failures during
execution.

Since it’s much faster to learn window and microwave
than the other activities, they are only used as source tasks
but not target tasks in the transfer experiments below.

Semantic Similarity Figure 4 summarizes the semantic
similarity in a matrix. Each row is a source activity and
each column is a target activity. A high number (or warm
color) means the descriptions of the two activities are close
in the embedding space, whereas a low number (or cool
color) indicates that the embeddings are distant. It may not
be intuitive why some activities are more similar than oth-
ers based on their abbreviated names. For example, stor-
ing food, cleaning kitchen cupboard, putting away dishes,
putting away Halloween decorations all involve moving ob-



food cupboard halloween misplaced dishes window microwave

-8.5 -34.5 1.1 4.0 -7.0 196.0 189.0

Table 1: Mean reward per episode achieved at the end of training.

Figure 5: Transfer ratios of the first 80 episodes.

jects into cabinets, so their similarity scores are high when
taking into account the full descriptions.

Transfer Ratios Figure 5 presents the transfer ratio ma-
trix after 80 episodes (or about 5000 steps). A ratio above
1 indicates positive transfer, i.e. the transfer learner receives
higher total reward during training. Comparing with the sim-
ilarity score matrix, we can make two observations. First, a
high-quality source policy can lead to positive transfer, even
if the activity is not similar. The activities storing food and
putting away Halloween decorations (two difficult tasks) are
not similar to locking every window or cleaning microwave
oven (two easy tasks), but we see high transfer ratios in the
first two rows of their columns. Second, for each target ac-
tivity, higher semantic similarity has a higher chance of pos-
itive transfer. Cleaning kitchen cupboard and putting away
cleaned dishes have a high semantic similarity (0.43). The
only positive transfer to cupboard was from dishes and vice
versa. On the other hand, collecting misplaced items is se-
mantically very different from all other activities, and gets
some of the worst transfer ratios.

Catastrophic Forgetting While there are clear signs that
re-using policies can jump start learning a new activity, the
benefits of transfer quickly disappear as catastrophic forget-
ting takes place. Figure 6 shows the transfer ratios after 160
episodes (or about 10,000 steps). The general observations
in Figure 5 still hold, but the ratios are getting lower and

Figure 6: Transfer ratios of the first 160 episodes.

there are fewer cases of positive transfer.
For future studies, one of the ideas to transfer knowl-

edge without suffering from the conflicting goals is by de-
coupling the task-independent knowledge from the task-
dependent knowledge. In the case of household activities,
there is a lot of shared knowledge across activities, espe-
cially the preconditions and effects of actions. For example,
TOGGLE OFF(cup 0) is an invalid action in any activity. To
this end, successor features (Barreto et al. 2017) and uni-
versal value function approximation (Schaul et al. 2015) are
both methods to learn representations that decouple the dy-
namics from the rewards so they will generalize over differ-
ent goals. Meanwhile, there are neural representations de-
signed to avoid catastrophic forgetting. Progressive neural
nets (Rusu et al. 2016) add a new column of network while
preserving the weights learned in previous tasks.

Conclusion
We propose that home robots can efficiently learn novel
household tasks from similar but distinct activities, and
present our analysis in the BEHAVIOR benchmark. Our ex-
periments show encouraging results: activity similarity mea-
sured by language embeddings can be used as a predictor for
transfer performance, and a high-quality source policy of an
easy but different activity can sometimes lead to a jump-
start. We also observe the problem of catastrophic forgetting
and suggest future research in this direction.
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Shridhar, M.; Yuan, X.; Côté, M.-A.; Bisk, Y.; Trischler,
A.; and Hausknecht, M. 2021. ALFWorld: Aligning
Text and Embodied Environments for Interactive Learning.
arXiv:2010.03768.
Soemers, D. J. N. J.; Mella, V.; Piette, E.; Stephenson, M.;
Browne, C.; and Teytaud, O. 2021. Transfer of Fully Convo-
lutional Policy-Value Networks Between Games and Game
Variants. arXiv:2102.12375.
Srivastava, S.; Li, C.; Lingelbach, M.; Martı́n-Martı́n, R.;
Xia, F.; Vainio, K.; Lian, Z.; Gokmen, C.; Buch, S.; Liu,
C. K.; Savarese, S.; Gweon, H.; Wu, J.; and Fei-Fei, L. 2021.
BEHAVIOR: Benchmark for Everyday Household Activ-
ities in Virtual, Interactive, and Ecological Environments.
arXiv:2108.03332.
Taylor, M. E.; and Stone, P. 2009. Transfer Learning for Re-
inforcement Learning Domains: A Survey. Journal of Ma-
chine Learning Research, 10(7).
Zhu, Z.; Lin, K.; and Zhou, J. 2021. Transfer
Learning in Deep Reinforcement Learning: A Survey.
arXiv:2009.07888 [cs, stat].


