
Action Dynamics Task Graphs for Learning Plannable Representations of
Procedural Tasks

Weichao Mao,1,2* Ruta Desai,2 Michael Louis Iuzzolino,2 Nitin Kamra2

1 University of Illinois Urbana-Champaign
2 Reality Labs Research, Meta

weichao2@illinois.edu, {rutadesai, mliuzzolino, nitinkamra}@meta.com

Abstract

Given video demonstrations and paired narrations of an at-
home procedural task such as changing a tire, we present
an approach to extract the underlying task structure – rele-
vant actions and their temporal dependencies – via action-
centric task graphs. Learnt structured representations from
our method, Action Dynamics Task Graphs (ADTG), can then
be used for understanding such tasks in unseen videos of hu-
mans performing them. Furthermore, ADTG can enable pro-
viding user-centric guidance to humans in these tasks, ei-
ther for performing them better or for learning new tasks.
Specifically, we show how ADTG can be used for: (1) track-
ing an ongoing task, (2) recommending next actions, and (3)
planning a sequence of actions to accomplish a procedural
task. We compare against state-of-the-art Neural Task Graph
method and demonstrate substantial gains on 18 procedural
tasks from the CrossTask dataset, including 30.1% improve-
ment in task tracking accuracy and 20.3% accuracy gain in
next action prediction.

1 Introduction
With the advent of augmented reality and advanced vision-
powered AI systems, we envision a future of next generation
AI assistants that will be able to deeply understand the at-
home tasks that users are doing from visual data and assist
them to accomplish these tasks. These AI assistants with rea-
soning capabilities would be able to track the user’s actions
in an ongoing complex task, detect mistakes, and provide
actionable guidance to the users such as next steps to take.
Such user-centric guidance can either help the user better
perform a task or help them learn a new task more efficiently.

To make progress toward such assistants, we focus on
at-home procedural tasks, where humans routinely require
guidance. Examples of such tasks include assembling fur-
niture, making lemonade, preparing fish curry, changing a
tire, and more. Procedural tasks typically involve executing
specific durative actions in certain temporal order. We refer
to the actions needed to accomplish a given procedural task
and their temporal dependencies as task structure. Our goal
is to learn representations that capture such underlying task

*Work done while interning at Reality Labs Research, Meta.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

structure for downstream guidance generation from visual
demonstrations such as videos and annotated action labels.

Learning such task structure from videos is challenging
for multiple reasons. First, procedural tasks require a rep-
resentation to track the state of the task and identify du-
rative actions grounded in visual observations. Both these
challenges require dealing with immense variations in vi-
sual observations even for demonstrations from a single task.
Also, procedural tasks often have multiple acceptable ac-
tion sequences; i.e., the ordering of some actions may be
interchanged without affecting the final outcome while cer-
tain actions are temporally dependent on others. Such in-
terchangeability and temporal dependence between actions
must also be learnt directly from data.

To mitigate these challenges, we propose a structured
representation – Action Dynamics Task Graph (ADTG),
a graph data-structure centered around actions that inher-
ently captures the temporal dependence in procedural tasks.
ADTG focuses solely on actions and avoids representing
states in the graph, thereby making the size of the graph
much smaller than typical task graph representations. It uses
robust visual representations of actions learnt by treating ac-
tions as “transformations between states”. We also present
an approach to learn: (i) task tracking and (ii) next action
prediction models based on ADTG using video demonstra-
tions and paired action annotations of a procedural task.

Our approach allows us to observe users while they per-
form procedural tasks and generate actionable plans for
them from direct visual observations. Specifically, ADTG
can enable: (1) tracking of an ongoing task using the learnt
graph structure, (2) recommendation of a next step to the
user, and (3) planning a sequence of potential next steps
to complete the task. We compare our method against the
Neural Task Graph (NTG) method (Huang et al. 2019) and
demonstrate substantial performance gains on the CrossTask
dataset (Zhukov et al. 2019). Specifically, our method
achieves 30.1% improvement in task tracking accuracy and
20.3% improvement in next action prediction accuracy. We
also present an analysis of its plan generation capability,
which is not possible with NTG, and show further ablation
studies to understand its strengths and weaknesses.

2 Related Work
Existing work in learning to plan from video demonstra-
tions can be broadly categorized into implicit and explicit
approaches based on whether it explicitly maintains struc-
tural representations of the tasks.

Implicit Representations Many existing approaches
learn to plan directly from visual observations without
explicitly characterizing the underlying structure of the
task (Srinivas et al. 2018; Zhukov et al. 2019; Sun et al.
2022; Zhao et al. 2022). In particular, under the assump-
tion of a differentiable action space, Universal Planning
Networks (UPN) (Srinivas et al. 2018) use gradient descent
to directly learn the planner and its representations in
an end-to-end fashion, by optimizing a supervised imita-
tion learning objective. Kurutach et al. (2018) combines
representation learning and planning using an InfoGAN
to learn a generative model of sequential observations
and a low-dimensional planning model. More recently, a
Transformer-based planning network named PlaTe (Sun
et al. 2022) has been proposed for procedure planning
in instructional videos, which simultaneously learns the
planning model and the latent semantic representations. In
comparison, our approach tries to explicitly learn structural
representations of tasks, leading to a modular pipeline that
allows us to easily achieve various downstream learning
objectives such as task tracking, action recommendation,
and planning.

Explicit State-Centric Representations Another line of
work uses more explicit representations for planning. These
are often the state transition model and the policy from a
Markov Decision Process (MDP), and are learnt using a
combination of model-based deep reinforcement learning
and imitation learning approaches directly from user demon-
strations (Fang et al. 2020; Chang et al. 2020; Bi, Luo, and
Xu 2021). In case of visual observations, one often resorts to
learning a partially observable MDP structure (Hafner et al.
2019). Other approaches try to represent state transitions via
transition graphs (Liu et al. 2016) and learn them from anno-
tated data (Pan et al. 2020; Xu et al. 2020). However, directly
working on the high-dimensional visual observations often
leads to graphs with a prohibitively large number of states,
which are computationally intractable for planning.

Explicit Action-Centric Representations To avoid the
intractability of state-centric representations, some recent
works have focused on action-centeric representations be-
cause the action space of a task is typically much smaller
than its observation/state space. The key idea is to lever-
age the Conjugate Task Graph (CTG) initially proposed
by (Hayes and Scassellati 2016), which reverses the roles
of states and actions in the task representations. More re-
cent approaches have proposed other easier to learn variants
of CTGs (Huang et al. 2019; Chang et al. 2020), but often
do not support flexible multi-step planning. Our approach is
centered around building a variant of the CTG that abstracts
out states and learns the inter-dependence amongst actions,
with a key focus on flexible multi-step plan generation at
runtime.

3 Problem Formulation
In this section, we introduce procedural tasks and graph-
based representations used in the recent literature to cap-
ture their structure. We also briefly describe the CrossTask
dataset used in our experiments.

3.1 Procedural Tasks
Definition Let the assistive agent be located in a world
with an underlying state s, which also includes informa-
tion about the user being assisted. Let g be a set of desired
goal states. The agent can suggest durative actions from the
set A = {a1, . . . , aN} to the user. Each action ai has pre-
conditions which must be met by the current state s, be-
fore the action can be enacted. Further, each action has ef-
fects (a.k.a. post-conditions) which change the current state
s, thereby transitioning the world into a new state s′. Ac-
complishing a procedural task requires finding a sequence
of actions from the current world state s to achieve a desired
goal g. Many at-home tasks like: make lemonade, change a
tire, etc. can be captured by this formulation.
Assumptions In our work, we assume the set of durative ac-
tions A for the procedural task is known a priori. The trained
agent should observe a user perform a procedural task and
recommend a relevant next action towards a desired goal
state for the task. At test time, we only have access to in-
put video frames1 of the user performing the task. At train-
ing time, we additionally also have action labels annotated
on the input videos along with their temporal start and end
boundaries. We do not have direct access to the current state
s at any time, neither the pre-conditions which enable ac-
tions, nor the post-conditions of actions. Hence, our agent
must represent the current task state, learn to track the state,
detect the feasible next actions, plan to achieve a goal state
and recommend the next action in the plan to the user.
Challenges This is challenging for three reasons. The first
challenge this introduces is to define and learn a state rep-
resentation in order to track the state of a procedural task.
The second challenge is to ground the action set A in visual
observations. Both these challenges require dealing with im-
mense variations in visual input even for demonstrations
from a single task. Finally, there are often multiple accept-
able action sequences for procedural tasks. The ordering of
some actions may be interchanged without affecting the fi-
nal outcome. For instance, in the task “Make lemonade”,
the actions “pour lemon juice” and “pour water” may be
interchanged. However, not all sequences are valid since
there exist temporal dependencies between certain actions,
e.g., the action “squeeze lemon” must occur before “pour
lemon juice” because the former’s effects are pre-conditions
for the latter. Hence, the third challenge is to learn the in-
terchangeability and temporal dependence between actions
from demonstrations of the task.

3.2 Graph-based Task Representations
Many approaches in existing literature (Chang et al. 2020;
Bi, Luo, and Xu 2021) have traditionally used Task Graphs

1optionally, also audio

Initial state

Container =
{juice}

Container =
{juice, jello

powder}

Container =
{mixture}

Stir
mixture

Container =
{jello powder}

(a) Task Graph

Stir
mixture

Container =
{juice}

Pour jello
powder

Pour juice

Start
Container =

{jello powder}

(b) Conjugate Task Graph

Figure 1: Comparing graph-based task representations for a subset of actions on the “Make jello shots” task.

to model states, actions, and the state transitions for proce-
dural tasks. Task Graphs represent states on their nodes and
actions on their edges to represent transitions between states
caused due to actions (Figure 1(a)). However, due to im-
mense variation in visual observations, observation spaces
(and hence state spaces) can be extremely large. Hence, Task
Graphs can have a prohibitively large set of nodes, making
them intractable for planning purposes (Huang et al. 2019).

The above challenges can be mitigated by focusing on two
key observations: (a) action spaces of tasks are much smaller
than their visual observation and state spaces, and (b) proce-
dural tasks primarily require grounding actions in observa-
tions and modeling their inter-dependence for task comple-
tion. These observations suggest using a data structure cen-
tered around actions for modeling procedural tasks. Hence,
more recent methods focus on (variants of) Conjugate Task
Graphs (CTGs), which leverage the conjugate relationship
between states and actions by reversing their representations
in the Task Graph (Hayes and Scassellati 2016).

A CTG represents actions on its nodes, while a directed
edge from action ai to aj captures the pre-conditions of ac-
tion aj met by ai. Hence, a CTG has far fewer nodes than a
Task Graph and only captures the part of state space relevant
to the actions involved in the task, while ignoring other nui-
sance factors in the potentially infinite state space. Figure 1
illustrates a Task Graph and a CTG on a subset of actions
for the “Make jello shots” task. The original design of CTGs
still tries to encode state information into the edges (Hayes
and Scassellati 2016). However, directly learning state rep-
resentations from video demonstrations is often hard with-
out extensive object and attribute labeling. Since such anno-
tations are costly to procure, recent approaches (Huang et al.
2019) often learn simplified versions of CTGs which ab-
stract out state information. In our approach, we shall adopt
a similar approach to learn a simplified variant of CTG.

3.3 CrossTask dataset
We chose the CrossTask dataset (Zhukov et al. 2019) to learn
and evaluate our models on real-world instructional videos.
This dataset contains 2750 videos, each demonstrating one
of its 18 procedural tasks (e.g., “Make a latte”) and these
demonstrations span a variety of visual variations as well as
executed action orderings. In Appendix A, we provide a de-
tailed description of the CrossTask dataset and more statis-
tics for the 18 tasks.

For reproducibility and fair comparison with existing
methods, we leverage the pre-computed 3200-dimensional

video features provided along with the CrossTask dataset
for every one-second segment of the videos. Manually an-
notated action labels and their corresponding temporal seg-
mentation boundaries are also provided for learning and
evaluation. Following Zhukov et al. (2019), for each task
we use 50 videos for training, 20 videos for validation of
hyperparameters, and leave the rest of the videos unseen for
testing.

4 Action Dynamics Task Graphs
In this section, we present our approach for learning
plannable representations and using them to provide guid-
ance for procedural tasks. We choose to represent a proce-
dural task with a simplified version of a CTG, which we call
as an Action Dynamics Task Graph (ADTG)2. Our overall
approach contains several trained modules: In Section 4.1,
we introduce how we generate the underlying graphs and the
associated action embeddings from demonstrations. In Sec-
tion 4.2, we discuss how the generated graphs are used to
provide guidance to the human users in multiple scenarios,
including task tracking, next action prediction, and plan gen-
eration. Implementation details are discussed in Section 4.3.

4.1 Generating ADTG
While a CTG stores the effects of actions on its edges, it is
generally hard to obtain this information from annotations
since a universal grammar for object definitions and their
attributes must be established and taught to the annotators.
Consequently, state-specific information is generally absent
from most existing procedural task datasets. However, ac-
tions are generally known a priori, form a smaller set and
are relatively easier to annotate in videos. Hence, the graph
variant we devise (namely, ADTG) abstracts the notion of
state completely and focuses solely on actions and identi-
fying their inter-dependence. However, the state of the task
can still be tracked using the graph itself.

Each node in an ADTG represents an action ai. A directed
edge from action ai to aj encodes a temporal dependence
from ai to aj , if the latter action has been observed to occur
directly following the former during any demonstration of
the task. To generate the ADTG graph structure of a single
task T from all associated demonstrations in the training set,
we perform the following steps:

2Please excuse the notational abuse, where we refer to both our
overall approach as well our CTG variant as Action Dynamics Task
Graph (ADTG). The one being referred to will be generally clear
from context.

Start

pour water

pour juice

pour jello powder

pour alcohol

stir mixture

End

pour mixture into cup

(a) “Make jello shots”

Start

remove cap

put funnel

pour oil

pull out dipstick

End

close cap

wipe off dipstick

remove funnel

insert dipstick

(b) “Add oil to your car”

Start

brake on

get things out

start loose

jack up

unscrew wheel

withdraw wheel

End

put wheel

screw wheel

jack down

tight wheel

put things back

(c) “Change a tire”

Figure 2: Action Dynamic Task Graphs for three tasks from the CrossTask dataset.

1. Extract all actions that appeared in any video correspond-
ing to the task T into an action set AT for the task.

2. Initialize the ADTG graph with one node for each action
in the set AT .

3. Iterate over all videos for the task T :

(a) Let (a1, a2, . . . , an) be an action sequence encoun-
tered in a single video.

(b) For every pair of consecutive actions (at, at+1) in the
sequence, add a directed edge from the action node of
at to that of at+1 in the ADTG (if it does not exist
already).

By construction, if both edges ai → aj and aj → ai exist
in an ADTG, it makes the actions’ ordering independent of
each other. On the other hand, if only the edge ai → aj ex-
ists in the graph, it encodes a temporal constraint between
the two nodes, potentially because the action ai could be
contributing some pre-conditions for the action aj . In Fig-
ure 2, we illustrate the ADTGs for several tasks from the
CrossTask dataset.

Action Embedding Network The ADTG method also as-
sociates each action with an embedding vector representa-
tion in a continuous space for downstream use. To learn
the action embeddings, we leverage the fact that actions are
transformations from their pre-conditions to their effects (in-
spired from (Wang, Farhadi, and Gupta 2016)). Illustrated
in Figure 3, the action embedding network consists of three
learnable components: a condition generator, a condition
transformation prediction and the action embeddings.

The condition generator transforms the pre-conditions
and post-conditions from the visual feature space to lower-
dimensional semantic feature vectors. We use two-second
video segments around the beginning and ending of an ac-
tion to generate the pre- and post-condition semantic fea-
tures respectively. Specifically, a video from the CrossTask
dataset can be represented as X = (x1, x2, . . . , xT), where
T is the time duration of the video, and xt is the 3200-
dimensional feature vector encoding the t-th second of the
video. During training, the segmentation boundaries of the
actions are given in the form of time intervals. For any

action a, suppose that it occurs during the time interval
[t1, t2] (rounded to nearest integers). We use the two vi-
sual feature vectors Xpre = (xt1−1, xt1) to generate the
pre-condition semantic features f(Xpre) for the action, and
Xpost = (xt2 , xt2+1) to generate the post-condition seman-
tic features f(Xpre). The condition generator is shared over
all actions, for generating both pre- and post-conditions.

Each action a is associated with a trainable action em-
bedding vector ea. We next introduce a transformation pre-
dictor g to train the action embeddings so as to capture the
transformation from the pre-conditions to post-conditions.
The transformation predictor takes as input a pre-condition
f(Xpre) and a candidate action embedding ea, and out-
puts a predicted post-condition g(f(Xpre), ea). If the ac-
tion a matches the pre-condition, we would expect the
predicted post-condition to be close to the ground-truth
post-condition. We define the distance between two post-
condition vectors v1 and v2 as: D(v1, v2) = 1 − v1·v2

∥v1∥∥v2∥ .

We train the aforementioned modules (condition generator,
action embeddings, and transformation predictor) together
to minimize the distance for the matching action a, as cap-
tured by the following discriminative loss term:

Ldisc = D(g(f(Xpre), ea), f(Xpost)). (1)
To avoid trivial solutions, we further add a contrastive loss
term to maximize the distance for incorrect actions a′ ̸= a:

Lcont =
∑
a′ ̸=a

max(0,M −D(g(f(Xpre), ea′), f(Xpost))),

(2)
where M is a margin threshold in the sense that we will not
penalize an incorrect action if its distance is already larger
than M . Combining Equations (1) and (2) gives the com-
plete loss term L = Ldisc + Lcont for training the action
embeddings. We train the aforementioned modules using all
the actions jointly from the training videos for all the tasks
and store the ADTG graphs and the action embedding vec-
tors {ea}a∈A as representations for the actions.

4.2 Using ADTG for Guidance
We now introduce how our approach utilizes the ADTG rep-
resentations to provide guidance to humans when they per-

Condition
generator

3200Dx2

3200Dx2

128D

128D

Transformation
predictor

Video segments Pre-computed
features

Pre/Post-
conditions

+
96D

Action
Embedding

128D

Predicted
post-condition

Condition
generator

(cosine similarity)

Figure 3: Action embedding network

128D

Visual observation

Task
tracking

History RNN
hidden state

ADTG

Next action
recommendation

Localized
action node

Recommended
next action

Figure 4: Using ADTG for guidance

form a procedural task. We consider multiple scenarios of
guidance, including task tracking, next action recommen-
dation, and plan generation. A working pipeline of using
ADTG is illustrated in Figure 4.

Task Tracking and Next Action Recommendation In
task tracking, our model tries to track the human’s progress
when performing a certain task, by localizing the current vi-
sual observation in the corresponding ADTG graph. For any
time step t ∈ {1, . . . , T} of a given video, the inputs to the
task tracking module include the current visual observation
xt, the action history information ht−1 up to time step t−1,
and the embedding of a candidate action ea being evaluated.
The task tracking module then outputs a confidence score
indicating whether the candidate action a captures the given
visual observation xt. We then enumerate all the candidate
actions and localize to the action node at with the highest
confidence score in the ADTG. In particular, to get a suc-
cinct representation of the action history, we pass the se-
quence of history action embeddings (ea1 , . . . , eat−1) up to
time t−1 through a recurrent neural network (RNN), and use
the RNN hidden state as the action history information ht−1.
We train the task tracking module and the history RNN over
all the time steps of the training videos, and use the cross en-
tropy loss to update the network parameters for both of them
using back-propagation.

In next action recommendation, our model recommends
to the user an action to perform in the next time step. For any
time step t, the next action recommendation module takes as
input the currently localized action node embedding eat

, the
action history information ht, and the embedding of a candi-
date next action ea being evaluated. It maps these inputs to a
confidence score as the output, indicating where it believes
that the evaluated candidate action is a suitable one for the
next time step. We then enumerate all the candidate next ac-
tions from the outgoing edges of the localized action node in
the ADTG, and select the action with the highest confidence
score as the recommendation at+1 to the user. The action
history information comes from the hidden state of the same
history RNN as in the task tracking module. We again use
the cross entropy loss to train the next action recommenda-
tion module over any consecutive action pairs (at, at+1) in
the training videos.

Plan Generation Given a visual observation, plan gener-
ation is used to generate a sequence of actions to accomplish
the task from this point onward. The visual observation can

come from either the very beginning of the task (i.e., com-
plete plan generation) or from a random midpoint in the ex-
ecution of the task (i.e., planning after a prefix observation
sequence). In our approach, plan generation is done by ap-
plying one step of task tracking, followed by multiple steps
of next action recommendation in an autoregressive way.
Specifically, given an initial visual observation and initial
action history, we pass them through the task tracking mod-
ule to recognize the current action, and localize to an action
node in the ADTG. Using the embedding of the localized
action and the action history information as input, we ob-
tain the next action to perform from the next action recom-
mendation module. Finally, we update the action history in-
formation by passing the newest action through the history
RNN, and recursively invoke the next action recommenda-
tion module to generate a sequence of actions to perform.
Repeating this process will lead to a plan to accomplish the
task. In this sense, our plan generation is built entirely upon
existing modules.

In the recursive process of plan generation, instead of fol-
lowing the greedy action choice outputted by the next action
recommendation module at each step, we use beam search
to select the output sequence with higher overall likelihood.
Specifically, for a beam search width of k, we maintain
k candidate action trajectories, perform rollouts based on
these trajectories, and only keep the rollout trajectories with
the top k highest likelihoods at each step. In this way, our
method strikes a good balance between computation com-
plexity and the optimality of the selected action sequence.

4.3 Implementation Details
In our implementation, the condition generator, transforma-
tion predictor, task tracking module, and the next action rec-
ommendation module are all instantiated as two-layer feed-
forward neural networks. The pre- and post-conditions are
128-dimensional semantic vectors, and the action embed-
ding vectors are 96-dimensional. The hidden size of the his-
tory RNN is 128. The margin threshold for contrastive loss
in Equation (2) is set to be M = 0.5. In the plan genera-
tion module, the beam search width is k = 5. We use the
ADAM optimizer (Kingma and Ba 2014) with a learning
rate of 1e− 5 for training the action embeddings, and learn-
ing rate 5e− 5 for training the task tracking and next action
recommendation modules. The action embeddings and task
tracking module are trained for 50 epochs, while the next
action recommendation modules takes 100 training epochs.

5 Results
In this section, we present the experimental results of our
ADTG approach and compare with existing baselines. We
evaluate ADTG on three important tasks that we have dis-
cussed: (1) task tracking, (2) next action recommendation,
and (3) plan generation, on the 18 primary tasks of the
CrossTask dataset.

5.1 Comparison Baselines
We compare our approach with three baselines from ex-
isting works, namely the Neural Task Graph (NTG) ap-
proach (Huang et al. 2019), the CrossTask (CT) ap-
proach (Zhukov et al. 2019), and a supervised-learning vari-
ant of the CrossTask approach (CT-S).

NTG Similar to ours, NTG (Huang et al. 2019) is also a
modularized method that uses (a simplified variant of) the
conjugate task graphs as intermediate representations. While
it supports task tracking and next action recommendation,
its next action predictor requires visual observations as in-
put. Hence, in the absence of an interactive environment, it
cannot generate a plan for a task in an autoregressive way as
we do. More details on NTG can be found in Appendix C.

CT The CrossTask baseline (see Appendix B) refers to the
weakly-supervised learning approach proposed in the same
work (Zhukov et al. 2019) along with the CrossTask dataset.
It proposes a component model capable of performing task
tracking, but does not support next action recommendation
or plan generation.

CT-S The original CrossTask approach is a weakly-
supervised learning method. For fair comparison, we also
consider a supervised-learning variant of CrossTask that
adopts the same linear classifier as in Zhukov et al. (2019),
but further uses the annotated action segmentation bound-
aries during training.

5.2 Evaluation Metrics
We consider four metrics for evaluation, namely accuracy,
accuracy excluding null actions, log-likelihood, and mean
Intersection over Union (mIoU).

• Accuracy: It measures whether the action prediction of the
model matches the ground-truth action at each individual
step, and then averages over all time steps.

• Accuracy excluding null actions: The motivation for con-
sidering such a metric is that in the CrossTask dataset,
about 72% of the video duration does not have an actual
action happening. These video segments contain introduc-
tion parts of the video or certain transitions from one ac-
tion to another. We call these steps the null action steps to
distinguish them from the other steps that do have concrete
actions. In task tracking, since we care more about the
model’s capability to correctly recognizing concrete ac-
tions, we introduce the “accuracy excluding null actions”
metric to specifically measure the accuracy on the steps
excluding the null actions.

• Log-likelihood: We compare the log-likelihood of the
model prediction vs. that of the ground-truth action. If

Table 1: Task tracking results

Metrics ADTG NTG CT CT-S

Accuracy 0.741
(± 0.013)

0.663
(± 0.014) N/A 0.763

(±0.005)
Accuracy
excl. null

0.557
(± 0.042)

0.256
(± 0.025)

0.222
(±0.004)

0.224
(±0.004)

these two values are close enough, we would know that
the model is not entirely wrong because, according to its
predictions, it also has a high probability of selecting the
ground-truth action as the output.

• Mean Intersection over Union (mIoU). This metric is
specifically used for evaluating the plan generation perfor-
mances. Let {a∗t }t≥1 be the set of ground truth actions of
a video, and {at}t≥1 be the set of predicted actions. The
mIoU is defined as |{at}∩{a⋆

t }|
|{at}∪{a⋆

t }|
. Intuitively, to get a high

mIoU score, the model needs to understand what actions
are required, but need not be able to discern the correct
ordering. It is hence a less strict metric than accuracy.

5.3 Experimental Results
Task Tracking Table 1 shows the results for task tracking,
which measures our method’s capability of recognizing the
action from a given visual observation. All results are aver-
aged over 5 runs, and we show both the mean values and
the standard deviations of the metric scores. The supervised
variant of CrossTask achieves the highest overall accuracy.
However, since about 72% of the video duration are null ac-
tion steps, the sample labels are largely biased toward null
actions. Achieving a high overall accuracy does not neces-
sarily indicate that the method is capable of correctly recog-
nizing the actual actions, which is the main objective of task
tracking. Instead, our ADTG approach achieves more than
30.0% higher accuracy than the comparison baselines when
excluding the null action steps, and at the same time shows
a near-optimal overall accuracy. This suggests that ADTG
is able to successfully track the task progress for most time
steps of a given video and its predictions are not misled by
the dominance of the null actions. We attribute the improve-
ment to the incorporation of the action history information
and the effective representation of the action embeddings.

Next Step Recommendation Table 2 shows the results
for next action recommendation, which measures whether a
method is capable of recommending a valid action to per-
form in the next time step. The candidate next action set
consists of actions that have been observed to occur im-
mediately after the current action in at least one training
video demonstration. Our approach again achieves a higher
accuracy than the NTG baseline, indicating that ADTG is
able to recommend the ground-truth next action more fre-
quently. Further, for ADTG, the difference between the av-
erage log-likelihood of the model predictions and that of the
ground-truth actions is also smaller. This is especially im-
portant since often there are multiple possible correct next
actions and the ground truth action in the dataset is only one
of those. The smaller difference suggests that, though ADTG

Table 2: Next action recommendation results

Metrics ADTG NTG

Accuracy 0.523
(± 0.026)

0.32
(± 0.026)

Log-likelihood −0.562
(±0.015)

− 0.018
(± 0.001)

Log-likelihood
ground-truth

−0.918
(±0.023)

− 1.155
(± 0.091)

Table 3: Plan generation results

Metrics Complete plan
generation

Planning
after a prefix

Accuracy 0.190
(±0.010)

0.294
(±0.018)

mIoU 0.333
(± 0.062)

0.628
(± 0.023)

recommends an action different from the ground truth some-
times, the ground-truth actions also have a high probability
to be selected.

Planning The results for plan generation are shown in Ta-
ble 3. Neither NTG nor CT supports plan generation in the
absence of an interactive environment, and hence only the
results for ADTG are presented. We consider two cases here:
In the complete plan generation case, ADTG is used to gen-
erate the entire action sequence for a task from the very first
step. The second case, namely planning after a prefix, occurs
when ADTG observes a human user performing the task up
to a certain step, and then plans from this step onward. For
this case, we uniformly sample a time step of the video, and
use the ground-truth action sequence before this step as a
prefix action history to generate the remaining actions. From
Table 3, we see that ADTG achieves higher accuracy and
mIoU scores in the planning after a prefix case. This is be-
cause ADTG uses an autoregressive beam search to plan,
and errors are more likely to be accumulated for long hori-
zon plans, as in the complete plan generation case. Finally,
we remark that ADTG explicitly outputs an end-of-sequence
(EOS) token to stop the recursive action generation process
and terminate the planning. This allows ADTG to plan for a
flexible horizon as opposed to existing methods for procedu-
ral task planning (Chang et al. 2020; Bi, Luo, and Xu 2021)
which only plan for a fixed horizon of T = 3 or T = 4
steps. We further visualize and analyze the plans generated
on a few testing videos in Appendix D.

5.4 Ablations
We conducted ablation studies to evaluate the effectiveness
of different components in the ADTG pipeline.

Role of Action Embeddings First, we investigate the ef-
fectiveness of learning action embeddings as (pre/post)-
condition transformations. We consider three alternative
ways to generate action embedding vectors: Random embed-
dings where the vectors are randomly initialized, One-hot
embeddings which are one-hot action encodings, and NTG

Table 4: Action embedding ablation results

Metrics ADTG Random One-hot NTG embed
Task tracking

accuracy
0.741

(±0.013)
0.721

(±0.010)
0.728

(±0.016)
0.7770

(±0.010)
Task tracking
acc. excl. null

0.557
(±0.042)

0.521
(±0.010)

0.508
(±0.031)

0.549
(±0.034)

Next action
accuracy

0.523
(±0.026)

0.459
(±0.031)

0.470
(±0.032)

0.500
(±0.017)

Planning
accuracy

0.294
(±0.018)

0.279
(±0.022)

0.311
(±0.013)

0.306
(±0.014)

Planning
mIoU

0.628
(±0.023)

0.631
(±0.037)

0.596
(±0.030)

0.606
(±0.052)

embeddings which uses the intermediate action encodings
from the node localizer of the NTG baseline. The evalua-
tion results in Table 4 show that the four variants do not
differ significantly, but the ADTG embedding scheme still
achieves close-to-highest performance in all tasks. This sug-
gests that treating actions as transformations leads to (only
marginally) better representations, however it does not play
a dominant role on the CrossTask dataset. We believe that
this is primarily because the actions in the CrossTask tasks
do not have much semantic or hierarchical overlap across
tasks, unlike in Wang, Farhadi, and Gupta (2016). Hence,
any embedding which disambiguates actions clearly per-
forms well on this dataset. We defer investigation of this
effect with connected action semantics to future work.

Role of Action History In the second ablation, we evalu-
ate whether using an action history in the task tracking and
next action recommendation modules are helpful. We com-
pare with a variant of ADTG that removes the history RNN
and does not rely on the action history information. The re-
sults are presented in Table 5. We see that ADTG signif-
icantly outperforms its no-history variant on all evaluation
metrics, thereby assuring that action history information is
very helpful in procedural tasks.

Table 5: Action history ablation results

Metrics ADTG ADTG (no history)

Task tracking acc. 0.741
(±0.013)

0.666
(±0.016)

Task tracking
acc. excl. null

0.557
(± 0.042)

0.443
(± 0.033)

Next action acc. 0.523
(± 0.026)

0.413
(± 0.026)

Planning acc. 0.294
(±0.018)

0.204
(±0.014)

Planning mIoU 0.628
(± 0.023)

0.376
(± 0.033)

6 Discussion
From the experimental results and ablation studies, we have
demonstrated that using the action history information con-
tributes significantly to the superior performance of ADTG.

This suggests that, for tasks where the ordering and temporal
dependencies of the actions play a key role, one must condi-
tion on the action history. In addition, compared to existing
end-to-end architectures, another advantage of ADTG is the
modular design, which allows us to share certain modules
across multiple downstream evaluation tasks, and to evalu-
ate the performance of the pipeline in finer granularity.

A potential improvement would be to make better use of
the visual observations in plan generation. The current de-
sign of the ADTG pipeline is not able to correct itself in
the later steps of plan generation if it localizes itself in the
wrong action node at the very beginning, which accounts
for the failure cases in our visualized qualitative study (see
Appendix D). Interesting future directions would include in-
corporating more state information (e.g., object or attribute
information) on the edges of ADTG graphs, and modifying
the beam search for generating plans to utilize this informa-
tion without having to make explicit state predictions.

7 Conclusion
In this paper, we have presented an Action Dynamics Task
Graphs approach for learning structured representations of
procedural tasks from video demonstrations. We have shown
that ADTG can be used to provide guidance to a human
user via task tracking, next action recommendation, and
plan generation. We have conducted experiments on the
CrossTask dataset and demonstrated the superior perfor-
mance of ADTG over existing baselines.

Acknowledgments
We sincerely thank Rohan Chitnis for valuable feedback and
comments.

References
Bi, J.; Luo, J.; and Xu, C. 2021. Procedure planning in in-
structional videos via contextual modeling and model-based
policy learning. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 15611–15620.
Carreira, J.; and Zisserman, A. 2017. Quo vadis, action
recognition? a new model and the kinetics dataset. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 6299–6308.
Chang, C.-Y.; Huang, D.-A.; Xu, D.; Adeli, E.; Fei-Fei, L.;
and Niebles, J. C. 2020. Procedure planning in instructional
videos. In European Conference on Computer Vision, 334–
350. Springer.
Fang, K.; Zhu, Y.; Garg, A.; Savarese, S.; and Fei-Fei, L.
2020. Dynamics Learning with Cascaded Variational Infer-
ence for Multi-Step Manipulation. In Conference on Robot
Learning, 42–52. PMLR.
Hafner, D.; Lillicrap, T.; Fischer, I.; Villegas, R.; Ha, D.;
Lee, H.; and Davidson, J. 2019. Learning latent dynamics
for planning from pixels. In International Conference on
Machine Learning, 2555–2565. PMLR.
Hayes, B.; and Scassellati, B. 2016. Autonomously
constructing hierarchical task networks for planning and

human-robot collaboration. In IEEE International Confer-
ence on Robotics and Automation, 5469–5476. IEEE.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, 770–778.
Hershey, S.; Chaudhuri, S.; Ellis, D. P.; Gemmeke, J. F.;
Jansen, A.; Moore, R. C.; Plakal, M.; Platt, D.; Saurous,
R. A.; Seybold, B.; et al. 2017. CNN architectures for large-
scale audio classification. In IEEE International Conference
on Acoustics, Speech and Signal Processing, 131–135.
Huang, D.-A.; Nair, S.; Xu, D.; Zhu, Y.; Garg, A.; Fei-Fei,
L.; Savarese, S.; and Niebles, J. C. 2019. Neural task graphs:
Generalizing to unseen tasks from a single video demonstra-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 8565–8574.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kurutach, T.; Tamar, A.; Yang, G.; Russell, S. J.; and
Abbeel, P. 2018. Learning plannable representations with
causal InfoGAN. Advances in Neural Information Process-
ing Systems, 31.
Liu, C.; Yang, S.; Saba-Sadiya, S.; Shukla, N.; He, Y.; Zhu,
S.-C.; and Chai, J. 2016. Jointly learning grounded task
structures from language instruction and visual demonstra-
tion. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, 1482–1492.
Pan, L.-M.; Chen, J.; Wu, J.; Liu, S.; Ngo, C.-W.; Kan, M.-
Y.; Jiang, Y.; and Chua, T.-S. 2020. Multi-modal cook-
ing workflow construction for food recipes. In Proceedings
of the 28th ACM International Conference on Multimedia,
1132–1141.
Srinivas, A.; Jabri, A.; Abbeel, P.; Levine, S.; and Finn,
C. 2018. Universal planning networks: Learning generaliz-
able representations for visuomotor control. In International
Conference on Machine Learning, 4732–4741. PMLR.
Sun, J.; Huang, D.-A.; Lu, B.; Liu, Y.-H.; Zhou, B.; and
Garg, A. 2022. PlaTe: Visually-grounded planning with
transformers in procedural tasks. IEEE Robotics and Au-
tomation Letters, 7(2): 4924–4930.
Wang, X.; Farhadi, A.; and Gupta, A. 2016. Actions˜ trans-
formations. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2658–2667.
Xu, F. F.; Ji, L.; Shi, B.; Du, J.; Neubig, G.; Bisk, Y.; and
Duan, N. 2020. A benchmark for structured procedural
knowledge extraction from cooking videos. arXiv preprint
arXiv:2005.00706.
Zhao, H.; Hadji, I.; Dvornik, N.; Derpanis, K. G.; Wildes,
R. P.; and Jepson, A. D. 2022. P3IV: Probabilistic Procedure
Planning from Instructional Videos with Weak Supervision.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2938–2948.
Zhukov, D.; Alayrac, J.-B.; Cinbis, R. G.; Fouhey, D.;
Laptev, I.; and Sivic, J. 2019. Cross-task weakly super-
vised learning from instructional videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 3537–3545.

A Details on the CrossTask Dataset
In this appendix, we provide detailed statistics for the 18
primary tasks in the CrossTask dataset (Zhukov et al. 2019).
This dataset contains 2750 videos, each demonstrating one
of its 18 procedural tasks; e.g., “Make a latte”, “Change a
tire”, or “Make pancakes”. The average video length is about
5 minutes, with a total of 212 hours of recorded videos.
These tasks are fairly complex and each task takes on av-
erage 7.4 actions to complete. Simpler tasks like “Jack up a
car” take about 3 actions to finish, while more complicated
ones like “Change a tire” can take as many as 11 actions.

Table 6 shows a complete list of the 18 primary tasks, their
average video lengths, sizes of the action spaces, average
step lengths, and percentage of “null action” steps. The ac-
tion space of a task is the set of all candidate actions that can
be taken when performing the task, although some videos
skip certain actions and do not cover the complete action
space. The average step length measures the average number
of steps taken in the actual video demonstrations to complete
a task. Due to certain actions being skipped in some videos
and others being repeated, the average step length of a task is
not always equal to its action space size. “Null actions” are
used to refer to the video segments that do not have actual
actions happening, such as the introduction part of the video
or transitioning scenes from one action to another. In Fig-
ure 2, we also illustrate the Action Dynamics Task Graphs
for several tasks from the CrossTask dataset.

For reproducibility and fair comparison with existing
methods, we leverage the pre-computed video features pro-
vided along with the CrossTask dataset. For each one-second
segment of the video, a 3200-dimensional feature vector is
provided and contains a concatenation of 1024-D RGB I3D
features (Carreira and Zisserman 2017), 2048-D Resnet-
152 features (He et al. 2016), and 128-D audio VGG fea-
tures (Hershey et al. 2017).

B Details for the CrossTask Baseline
The CrossTask baseline refers to the solution proposed in the
same work (Zhukov et al. 2019) along with the CrossTask
dataset. The CrossTask baseline is a weakly-supervised ap-
proach for learning from instructional videos. It does not
rely on the strong supervisions via temporal annotations
of the action boundaries, but instead only use the tempo-
ral constraints generated from the instructional narrations
and an ordered list of the action steps. The CrossTask ap-
proach is built upon the idea that the learning model should
share certain components (e.g., verbs or nouns) while learn-
ing different steps across multiple tasks. For example, the
action “pour egg” should be trained jointly with other tasks
involving the components “pour” or “egg”. Following this
idea, CrossTask proposes to use component models to rep-
resent each step as its constituent components instead of
as a monolithic entity. The step assignment objective in
CrossTask essentially corresponds to our task tracking mod-
ule, yet CrossTask does not support next action recommen-
dation or plan generation.

Since the original CrossTask approach is a weakly-
supervised learning method, for fair comparisons, in our ex-

periments we also consider a supervised-learning variant of
CrossTask that adopts the same linear classifier as (Zhukov
et al. 2019), but further uses the annotated action segmenta-
tion boundaries for training.

C Details for the Neural Task Graphs
Baseline

Similar to ours, the NTG approach is a modularized method
that uses (a simplified variant of) the conjugate task graphs
as intermediate representations. NTG focuses on generaliz-
ing to unseen tasks from a single video demonstration in the
same domain. It uses the CTG representations to explicitly
modularize the video demonstration and the derived policy,
so as to incorporate the compositional structure of the tasks
into the NTG model. Specifically, NTG consists of a gener-
ator that builds a conjugate task graph from video demon-
strations, and an execution engine that uses the learned tasks
graphs to perform task tracking. In particular, the NTG gen-
erator itself can be decomposed into two parts: a demo inter-
preter that is used to obtain a single action path traversing the
CTG by observing the action sequence in the video demon-
stration, and a graph completion network that adds the edges
that are not observed in the single demonstration to capture
the potential interchangeability of the action ordering. The
NTG execution engine also consists of two parts: A node
localizer that tries to localize the current action node in the
CTG based on the visual observation (i.e., task tracking),
and an edge classifier that checks the precondition of each
possible outgoing edge from the localized node to decide
the next action (i.e., next action recommendation). Since the
edge classifier in NTG relies on visual observations as in-
put, in the absence of an interactive environment, it cannot
generate a full plan in an autoregressive way as we do.

D Plan Visualization
In Figure 5, we visualize the planned action sequences gen-
erated by ADTG on a few testing videos, and compare
them with the ground-truth (GT) plans. In the first exam-
ple, ADTG successfully generates the correct sequence of
actions for the task “Make jello shots”. In the second ex-
ample, the task tracking module of ADTG fails to recog-
nize the first step (“pour jello powder”) of the video and
misclassifies it as “stir mixture”. Since ADTG generates
plans by recursively invoking the next action recommen-
dation module, it is not able to correct such a mistake and
hence diverges from the ground-truth action sequence after-
ward. In the last example (on the task “Make pancakes”),
even though the action sequence planned by ADTG does
not exactly match the ground-truth plan, it still forms a se-
mantically reasonable plan to complete the task. This is be-
cause the ADTG generated plan simply switches the order
of the actions “pour milk” and “whisk mixture” compared
to the ground-truth and removes the repeated “whisk mix-
ture” steps, which makes sense in the given task. This also
suggests that we might need better ways to evaluate plans
in such datasets that do not have an interactive environment
and we leave this to future work.

Table 6: Statistics of the CrossTask dataset.

Task Number of videos Action space size Average step length Percentage of null action
Make Jello Shots 182 6 7.90 72%

Build Simple Floating Shelves 153 5 5.54 58%
Make Taco Salad 170 8 6.34 79%

Grill Steak 228 11 8.54 75%
Make Kimchi Fried Rice 120 6 8.66 70%

Make Meringue 154 6 6.72 67%
Make a Latte 157 6 5.06 71%

Make Bread and Butter Pickles 106 11 6.44 75%
Make Lemonade 131 8 8.28 69%

Make French Toast 252 10 9.10 68%
Jack Up a Car 89 3 3.38 81%

Make Kerala Fish Curry 149 7 10.02 69%
Make Banana Ice Cream 170 5 4.52 80%

Add Oil to Your Car 137 8 8.04 85%
Change a Tire 99 11 9.84 62%

Make Irish Coffee 185 5 4.94 74%
Make French Strawberry Cake 86 9 11.56 63%

Make Pancakes 182 8 10.54 70%
Average 153 7.4 7.84 72%

GT

Demo

Pour jello
powder Pour water Pour alcohol Stir mixture

Pour mixture
into cup

ADTG Pour jello
powder Pour water Pour alcohol Stir mixture

Pour mixture
into cup

GT

Demo

ADTG

Pour jello
powder Pour alcoholStir mixture Pour mixture

into cup

Stir mixture

GT

Demo

ADTG

Pour egg Whisk mixture Pour milkWhisk mixture Whisk mixture Pour mixture
into pan Flip pancake

Pour egg Pour milk Whisk mixture
Pour mixture
into pan Flip pancake

Pour mixture
into cup

X X

X X

Figure 5: Visualization of ground-truth plans (GT) vs. ADTG generated plans.

