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Abstract

The use and necessity of collaborative robots, particularly
personal robots, are increasing at a high rate. Human Activity
Recognition (HAR) is an active area of research to improve
the performance of personal robots. Activity recognition di-
rectly from visual observation is similar in experience with
human intelligence. The recent development in deep learn-
ing has proven its potential in activity recognition from video
data. However, state-of-the-art approaches have validated re-
sults on data set that are not suitable for personal robotics ap-
plications where proximity and the unique style of the subject
are important aspects. In this paper, we present Meta-learning
for Video-based Human Activity Recognition (MetaVHAR),
a simple but efficient approach for improving generalization
to unseen human subjects. We leverage the fact that every hu-
man has a unique style of their action and the activity recog-
nition of different humans can be considered as distinct tasks.
We validate our approach on a suitable HAR data set UTD-
MHAD, which consists of similar actions performed by dif-
ferent humans. Experimental results show that our proposed
approach outperforms the baseline classifier trained via stan-
dard approach by a large margin.

Introduction

Day by day, personal robots are becoming an integral part
of humans to make their life better. They are helping indi-
viduals by automating their repetitive and monotonous work
at home and office. It’s not very far when they will take a
similar place like personal computers. Even they are more
important to help special groups of people who require more
support than others such as the elderly and disabled people.
According to the United Nations and the World Health Or-
ganization, the number of elderly people is expected to rise
by nearly 10% in the upcoming 35 years. As robots need to
work alongside different humans, generalization in Human
Activity Recognition (HAR) is a crucial aspect to facilitate
better human-robot coordination.

The temporal and depth component of human actions
make the action recognition task more complex (Tran et al.
2015). The temporal component refers to the features in the
temporal dimension. An action can not be identified cor-
rectly just from a single frame. The depth channel denotes
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the distance between the image plane and the corresponding
object in the RGB image. RGB-D data has depth informa-
tion that helps to unambiguously classify the action. Skele-
ton data, generally referred to as human pose data, captures
full information about actions with very limited key points.
Wearable inertial sensors such as accelerometers and gyro-
scopes can provide additional information about an activ-
ity. In general, depth information and inertial sensor data are
fused to achieve robust performance. However, acquiring all
these data has some overhead such as hardware cost, attach-
ing the hardware to the human subject, and extra compu-
tational processing compared to the simple video capturing
system. Thus, activity recognition based on only RGB video
is still at the center of interest.

There has been a lot of progress in the area of deep
video classification (Tran et al. 2015) (Carreira and Zis-
serman 2017) (Arnab et al. 2021). Previous work has at-
tempted to classify a large number of diversified human ac-
tions. The most commonly used data sets are sports-1M, Ki-
netics, UCF-101 (Kay et al. 2017) (Karpathy et al. 2014).
These data sets have hundreds of classes including but not
limited to smile, talk, run, eat, hair brushing, cycling, snow-
boarding, dive, ride horse, playing football, fencing, shoot-
ing bow, golf, etc. As we can see, the later set of actions is
not a good representative of actions happening in a home
environment. Also, the angle of view and perspective of the
videos are not perfectly aligned with the field of view of a
personal robot.

We argue that to improve the performance of a HAR sys-
tem deployed in a personal robot, the system needs to take
into consideration human-specific styles and attributes. At
the same time, the system needs to be trained and tested
against a benchmark that contains human-specific action
data. In this paper, we propose MetaVHAR, Meta-learning
for Video-based Human Activity Recognition, which con-
siders the activity recognition of every human as a different
task and apply a meta-learning based approach to learning
a classifier itself which can generalize better on a new hu-
man. We perform our experiment on UTD-MHAD data set
consisting of human-specific data. Our experimental results
demonstrate that the proposed approach outperforms deep
3d Convolutional Neural Network (3D CNN) based video
classifier trained via standard training process across all hu-
man subjects in the zero-shot learning scenario.
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Figure 1: Base Network Architecture
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Related Work

Activity Recognition

Activity recognition from the video is a well-studied area of
computer vision. While earlier works on video classification
have focused on designing hand-crafted spatio-temporal fea-
tures such as spatio-temporal interest points (STIPs) (Laptev
2005), histogram of oriented gradients(HOG3D)(Scovanner,
Ali, and Shah 2007), recent advances in deep learning have
triggered the development of deep networks for video. One
group of literature has applied CNNs trained on images to
extract spatial features from frames followed by a temporal
feature processing via Recurrent Neural Network (RNN) or
Long Short-Term Memory (LSTM) network (Donahue et al.
2015). Another set of approaches has used 3D CNNss to per-
form temporal convolutions in video and directly learned
the spatio-temporal features (Tran et al. 2015) (Ji et al.
2012). 3D CNNs have achieved higher performance in ac-
tion recognition tasks when trained on large-scale data sets
(Carreira and Zisserman 2017). Recently, transformer and
language pretraining-based models have demonstrated supe-
rior performance in video classification (Arnab et al. 2021).

Meta-learning

Meta-learning algorithms learn a new task by applying pre-
viously acquired knowledge from the set of meta-training
tasks. Some approaches consider the meta-learning task as
of a recurrent nature where the task-dependent hidden states
need to be learned (Santoro et al. 2016)(Munkhdalai and
Yu 2017). On the other hand, gradient-based approaches
aim to learn the initial parameters of the classifier which
can perform better across the tasks (Hochreiter, Younger,
and Conwell 2001)(Finn, Abbeel, and Levine 2017). In our
work, we adopted a popular gradient-based approach called
Model-Agnostic Meta-Learning (MAML) (Finn, Abbeel,
and Levine 2017). Recently, meta-learning has been de-
ployed to HAR, however, from a federated learning perspec-
tive and using other modalities than video (Li et al. 2021).

Methodology

In this section, we present MetaVHAR - an efficient meta
learning-based approach for human activity recognition. We
first describe the key idea and then develop the algorithm.
We assume that any human can be considered as a sam-
ple drawn from a large distribution of humans, the popula-
tion. That means all humans share some common features
because of their connection to the base distribution while
differing from each other. This difference corresponds to the
unique style of each human. Thus, the HAR task will be
slightly different for each human while sharing the common

features. We propose to consider the task of HAR for a par-
ticular person 7; coming from a distribution over tasks p(7).
Hence, p(7) represents the set of HAR tasks for all humans.

Our objective is to learn the network’s initial parameters
so that it can perform better on a new task drawn from p(7).
That means we are aiming to learn a classifier network that
is suitable for many tasks. Saying another way, we are at-
tempting to learn a HAR system that will produce a good
result for a new human sampled from the broader distribu-
tion of humans. To do this, we leverage MAML which op-
timizes the network parameters task-wise so that it can per-
form better on a new task (Finn, Abbeel, and Levine 2017).
Our proposed adaptation of the standard MAML for HAR is
described below in pseudocode.

Algorithm 1: MetaVHAR

Input: 74,4, Sampled humans of dataset for
training 7eyqin ~ p(T)

Parameter for Meta-learning: All network
parameters 6

Output: Learned weights for the network parameters

Initialize network parameters 6 with random weights;

while not done do

for all human or HAR tasks 7; in Tiyqin, dO

1. Sample a batch D; = {2),4())} with 1
data point from each action class for 7;;

2. Calculate the loss L, (fg) for D; using 6;

3. Compute the updated network parameter 6,
with gradient descent:
0; =0 — alg L, (fo);

4. Sample another batch of samples D/, for
that human for the meta-update;

end
Update the network parameter 6 with the loss
calculated from each ¢ and Dj:

0=0—pBAg ZTiNTtra,vxn, ﬁ'ri(feé);

end

We consider the classification network fy is parameter-
ized by 6. We attempt to learn more generalizable network
parameters starting from an initial set of random weights.
Thus the meta-optimization is performed over the network
parameters 6. As a proof of concept, we use a simple base
network and meta-learned all the network weights via our
proposed approach. The network can be considered as a
smaller version of the popular C3D model (Tran et al. 2015).
Figure 1 presents the base network architecture. We used
4 blocks of 3DConv+Pool followed by a global 3d average



(c) Person 6 (left) Baseline, (right) MetaVHAR

(d) Person 8 (left) Baseline, (right) MetaVHAR

Figure 2: Person-wise confusion matrices for the baseline and proposed method. The presented scores are normalized. The
vertical axis denotes the true labels while the horizontal axis denotes the predicted ones.

pooling layer and two fully connected layers. From an ex-
perimental perspective, we consider that the whole dataset
represents the full human distribution. Thus, 74,4, Which is
a sample subset of p(7), is considered the training set while
the rest of the human in p(7) is considered as test human.

We update the network in a human-wise (human-specific
HAR task-wise) approach. Thus, for each human-specific
HAR task 7;, we sample a batch of data points D; such that
it contains one sample from each action class (line 1 in al-
gorithm). Then the model loss is calculated based on D; and
the current network parameters 6 (line 2 in algorithm). As
a multi-class classification task, we use the standard cross
entropy loss function defined by:

N
Lo(fo)= > > yllogf5(al), )

(23 ,yd)~D; c=1

where N is the number of classes, yg is the binary indicator
(0 or 1) of whether the class label c is the correct classifica-
tion for input 27, and f§(z7) is the corresponding prediction
for class ¢ given the input (z7).

An intermediate set of weights 6. is computed with gradi-
ent decent using 0, = 0 — aAgL,,(fp) where « is the step
size hyperparameter. Finally, in the outer loop, the meta-
objective is calculated across all human-specific HAR tasks
in the training set. Particularly, this is estimated based on the

loss obtained by equation 1 using the intermediate weights
6} and another set of data sampled from that corresponding
task. While the network parameter 6 is updated through the
meta-optimization process, the objective considers the loss
evolved from the intermediate weights ;. The human-wise
training coupled with the meta-update enables learning the
common action-specific features, at the same time, respect-
ing the task-specific (human-specific) differences.

Experiments and Results
Data Set

We use the UTD-MHAD data set which contains 27 actions
performed by 8 distinct human subjects (Chen, Jafari, and
Kehtarnavaz 2015). There are 4 female and 4 male subjects.
Each subject repeated each action 4 times. The data set in-
cludes 861 data sequences, missing three of them. As we
are formulating different distinct tasks, to have a balance on
the data (8 humans x 27 actions x 4 times = 864), we just
randomly over-sample three samples from the correspond-
ing action classes for that specific subject. The 27 actions
performed are listed in the Appendix. The class list consti-
tutes a comprehensive set of human actions covering hand
gestures, daily activities, training exercises, and very few
numbers of sports actions. Also, the data is obtained from
the close proximity of the subject in an indoor setting.



Table 1: Comparison of MetaVHAR with baseline method
on UTD-MHAD Dataset. (P refers to "Person”)

Accuracy
Method P2 P4 P6 P8
Baseline 50.93 | 50.93 | 44.44 | 30.56
MetaVHAR || 63.89 | 62.96 | 62.04 | 69.44

Experimental Setup

We apply cross subjects protocol to split the training and
testing data. As proposed in the original paper, odd human
subjects (1,3,5,7) are used for training and even human sub-
jects (2,4,6,8) are used for testing (Chen, Jafari, and Kehtar-
navaz 2015). To implement, we use TensorFlow and Keras
deep learning library. The baseline classifier has been trained
for 200 epochs while the meta-training for 150 epochs. A
learning rate of 0.001 and a dropout rate of 0.5 have been
used. The size of the input frame is 128 x 128 x 3.

Results and Discussion

We consider the same base 3D CNN-based classifier trained
via a standard approach as a baseline. By standard approach
we mean, the baseline is trained with all the data from all the
training subjects together. We meta-learned the parameters
of the same baseline network via MetaVHAR. We used the
same learning rate for inner task learning and outer meta-
training. Table 1 presents the action recognition accuracy
of MetaVHAR compared to the baseline for the 4 subjects
in the test set. It is evident that MetaVHAR outperforms
the general training-based baseline for all human subjects.
The highest performance gain is achieved for human sub-
ject 8 which is about 39%. Figure 2 presents the confu-
sion matrices for the baseline and the proposed method for
each human subject. The diagonals are more consistent for
the MetaVHAR. MetaVHAR enables better representation
learning that takes into account the features that are com-
mon to all tasks.

Conclusions

We presented a meta learning-based training approach that
can efficiently learn to recognize human activity for a new
human from videos. Our method consistently demonstrates
better performance over the baseline across all unseen hu-
man subjects in zero-shot setting. This provides evidence
that a meta-learned network for HAR has higher generaliza-
tion capability than a general classifier. In the future, we plan
to meta-learn a state-of-the-art that has already achieved bet-
ter performance in action recognition. Further, we will ex-
tend the work to include other modalities of data that can be
obtained directly from videos such as human pose.
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A. Class List

Table 2: List of Classes in the UTD-MHAD Data Set

right arm swipe to the left
right arm swipe to the right
right hand wave
two hand front clap
right arm throw
cross arms in the chest
basketball shoot
right hand draw x
right hand draw circle (clockwise)
right hand draw circle (counter clockwise)
draw triangle
bowling (right hand)
front boxing
baseball swing from right
tennis right hand forehand swing
arm curl (two arms)
tennis serve
two hand push
right hand know on door
right hand catch an object
right hand pick up and throw
jogging in place
walking in place
sit to stand
stand to sit
forward lunge (left foot forward)
squat (two arms stretch out)
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