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Abstract

Many users especially older adults suffer from presbyopia
which is a visual inability to focus on nearby objects. Po-
tential solutions include using separate glasses for activities
that require different focal lengths for near and distant vision.
Usually, sedentary activities like sitting, reading, and brows-
ing on the computer require near-vision glasses while am-
bulatory activities like walking, jogging, and driving require
distant vision glasses. Users often forget to change glasses
while switching from sedentary to ambulatory activities. Us-
ing near-vision glasses for ambulatory activities leads to im-
paired depth perception and contrast sensitivity, increasing
the chances of falls. In order to detect user activities distinctly
and to alert them to change glasses while changing between
activities, we have proposed a novel activity detection system
called ActiSenSee. ActiSenSee uses a pair of glasses aug-
mented with inertial sensors to capture various discrete and
continuous activities from 23 users. Applying various ma-
chine learning and deep learning-based algorithms shows that
ActiSenSee can accurately identify the different activities and
the key activity transition from sitting to standing in discrete
and continuous settings.

Introduction
Developments in small sensing devices and short-range
wireless communication protocols have significantly
boosted many research areas and Human Activity Detection
is a major one among them. Human activity detection
has many applications including detecting [Li et al. 2009;
Kerdjidj et al. 2020] and/or preventing fall incidents [Kosse
et al. 2013] among older adults. The Centers for Disease
Control and Prevention, USA, predicted that at the current
rate, by 2030, there will be 7 deaths per hour caused by falls
for older adults [Moreland, Kakara, and Henry 2020]. Falls
are caused by various factors including loss of balance,
medical conditions, as well as visual distortions caused by
incorrect depth perceptions [Black and Wood 2005]. The
last one is often caused by the use of improper glasses or
improper use of those glasses. E.g., in the case of single-
focal length (SFL) glasses, near-vision glasses that is used
for reading are often not suitable for walking or taking stairs
as they significantly distort the field of vision. Similarly,
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using distant vision glasses used for driving or jogging is
not suitable for near-vision activities like reading. But the
latter may not lead to falls if the near vision activities are
performed by users while sitting. The same cannot be said
for the former one as distant vision activities are usually
associated with ambulatory (or mobility-related) activities.

Many users with multiple vision problems use multi-focal
length (MFL) glasses which can be divided into bifocal, tri-
focal, and progressive lenses. Wearing MFL has increased
in recent times as it has multiple benefits like using a sin-
gle glasses for most of the daily activities requiring different
focal lengths. However, researchers have identified several
disadvantages of using MFL glasses [Haran et al. 2009] in-
cluding the trip hazard caused by impaired depth perception
and contrast sensitivity [Lord et al. 2002; Lord, Smith, and
Menant 2010]. In fact, users of MFL are always advised to
“avoid looking down while walking”. To address this issue
older adults are also advised to use separate single focal-
length glasses for separate activities.

In this research, we plan to encourage users to use sep-
arate single-focal-length glasses for sedentary and ambula-
tory activities. To ensure users change into proper glasses
while shifting from sedentary to ambulatory activities we
aim to detect a sitting-to-standing activity transition through
an inertial sensor-based system and generate an alarm to re-
mind users. The IMU sensor is attached to a user’s glasses
(henceforth called “smart glasses”) and continuously detects
the user’s activities and keeps looking for a desired activity
transition event.

Wireless sensor-based activity recognition and fall detec-
tion are a mature research area [Kerdjidj et al. 2020; Kelly
et al. 2002]. However, activity detection using smart glasses
is novel. In this research, we proposed an ActiSenSee sys-
tem and collected data from 23 users wearing a pair of smart
glasses and performing two sedentary and two ambulatories
(standing or walking-focused) activities in a stand-alone or
discrete manner. One more activity was transitional - sit-
ting to standing and vice versa. The sensor data is analyzed
through a set of machine learning and deep learning algo-
rithms to accurately detect the activities and the transitions.
Finally, a set of continuous activities were performed by the
users to ensure the ML model can also detect the continuous
activities using their knowledge of the discrete activity pat-
terns. Results show promising outcomes of the ActiSenSee



system and the unique and novel contributions are listed be-
low:

• Developed the first smart glasses-based activity detection
system to alert users of single focal length glasses about
activity transition.

• Achieved an accuracy of 89% using traditional ML al-
gorithms and 95% using more data and computation-
intensive deep learning methods for activity detection.

• Applied the cost-effective ML models for continuous ac-
tivity detection and transition recognition on real data
collected from 23 users and achieved the highest accu-
racy of 91%.

Related Work
In this section, we discuss related research in sensor-based
activity detection and the effects of single and multi-focal
glasses on users.

Wearable Sensor-based Human Activity Detection
& Fall Prevention
Human activity detection is an interesting and important
research area being developed since the 1990s [Foerster,
Smeja, and Fahrenberg 1999]. Detecting human activities
is significant for various applications. Researchers have
adopted mainly two separate techniques [Lara and Labrador
2012] for activity recognition - (a) Using videographies
or other external sensors and (b) using wearable sensors.
Research works in the former category consider captur-
ing videos and detecting user activities by analyzing those
videos. Also, sensors like RFID tags are attached with daily
used objects to detect user activities [Van Kasteren, Englebi-
enne, and Kröse 2010; Tolstikov et al. 2011; Yang, Lee, and
Choi 2011; Sarkar et al. 2011; Hong and Ohtsuki 2011].
Smartphone-based activity detection [Joseph et al. 2010] is
also considered under this category. The latter category con-
siders attaching various wearable sensing modules to the hu-
man body to keep track of the movement of various body
parts. The most commonly used sensors are inertial mea-
surement units (IMUs) like tri-axial accelerometers and gy-
roscopes. Moreover, the user’s heart rate, blood pressure, lo-
cation information, etc are also tracked to zero for proper ac-
tivity determination by combining various sensor data. User
locations in indoor and outdoor environments are tracked
using GPS and WiFi signals. All relevant data from wear-
able sensor networks are integrated using smartphones and
then forwarded to servers for further processing and storage.
Also, the activity detection algorithms often operate in the
server environment. One significant problem under the ac-
tivity detection research is fall detection which is a major
health concern for older adults in home or in assisted liv-
ing [Ozcan et al. 2013; Zhu and Sheng 2011; Fortune et al.
2011]. There is extensive research coverage of fall detec-
tion literature in various survey articles [Kosse et al. 2013].
Fall prevention using wearable sensors has proposed several
useful methods including a pressure-sensor augmented neo-
prene sock that senses pressure when the wearer stands up
and alerts caregivers to assist the wearer to prevent fall risks.

Effects of Eye Glasses on Fall
Older adults often suffer from presbyopia which is a refrac-
tive error in eye lenses [Attebo, Ivers, and Mitchell 1999]
causing difficulty in focusing on nearby objects [Donahue
1999]. To address this condition, older individuals use sep-
arate single-focal lens (SFL) glasses for different activities,
such as reading glasses and driving glasses. This requires
changing into proper glasses when a change in activity takes
place. An alternative solution to mitigate the problem of
changing glasses frequently is to use multi-focal lens glasses
(MFL). MFL glasses can accommodate two distinct focal
lenses (bifocal), three distinct focal lenses (trifocal), or con-
tinuously changing focal lenses (progressive). Users can use
the lower part of the glasses for near-vision activities and
the higher part for distant-vision activities without changing
glasses. However, using MFL glasses have some problems
for users in terms of impaired depth perception and contrast
sensitivity [Lord et al. 2007, 2002]. Researchers have shown
that older adults wearing MFLs find difficulty in step negoti-
ation and proper foot placement while taking stairs [Johnson
et al. 2008, 2007] which leads to around 8% increase in falls
[Haran et al. 2010]. Brayton-Chung, et al. [Brayton-Chung,
Tomashek, and Smith 2013] have established the differences
in depth perception for users wearing SFL and MFL glasses.

Using Smart Glasses for Activity Detection
Researchers have worked for a long to develop wearable
sensor-based activity detection mechanisms. However, us-
ing smart glasses for activity detection is novel and has not
been investigated before. Although Google Glass 1 Vuzix
glasses 2 have been introduced by companies, but there is
no large-scale activity detection study using them except
an eye blink detection with Google glasses [Ishimaru et al.
2014]. In our previous work, we have introduced this con-
cept and have shown some basic experimental results with
machine learning-based activity classification [Raychoud-
hury, Yu, and Kiper 2022] with a maximum accuracy of
87%. In this work, we conduct more extensive evaluations
using ML and deep learning techniques and establish the
usefulness of our proposed system in correctly recognizing
user activities with accuracy up to 95%. Furthermore, we
have also conducted continuous activity classification and
transition detection with significantly promising results. Our
approach is unobtrusive and efficient and can be adopted by
older adults to remind them to change into proper glasses.

System Model of ActiSenSee
ActiSenSee proposed by us is an end-to-end system for user
activity detection using smart glasses. Our target partici-
pants are users of single focal length eyeglasses who need
to change glasses depending on the type of focal length re-
quired for the daily activity being performed. Users wear
the sensor-augmented glasses and perform a set of activities
listed in Table 1. Sensors embedded in the smart glasses (see
Fig. 1) are a tri-axial accelerometer, a tri-axial gyroscope,

1https://www.google.com/glass/start
2https://www.vuzix.com/pages/smart-glasses



a magnetometer, and a pressure sensor. The IMU sensor is
a MetaMotionC 3 wearable sensing entity which communi-
cates with a smartphone app ‘MetaBase’ 4 from the same
manufacturer using Bluetooth Low Energy wireless com-
munication protocol. We chose MetaMotionC as the sen-
sor incorporates a hardware-based Kalman filter to reduce
noise and distortion in sensor data. The sensors collect raw
data while the users perform the aforementioned activities
and send those to the smartphone through an app. The sen-
sor data is then uploaded to a server for cleaning and pre-
processing. Processed data is then subject to a number of
machine learning and deep learning-based classification al-
gorithms and a suitable model is chosen for discrete activity
recognition. The chosen model is applied to sensor data col-
lected for a set of continuous activities and it can success-
fully recognize individual activities. The transition between
sitting and standing is considered especially important for
users and an alarm is generated to remind them to change
into glasses with an activity-specific focal length.

Data Collection for Discrete & Continuous
Activities

One major contribution of this research was the painstak-
ing data collection process. We have collected data for 23
individuals who are healthy males and females aged 18 or
older. The participants must have smartphones (although we
provided the experimental smartphone) or are open to us-
ing smartphones and assistive technologies. They must be
able to walk without any external support and must not have
any uncorrected visual issues. Users who cannot satisfy the
above requirements are excluded from this study. Partici-
pants were recruited from the students and staff of Miami
University in Oxford, Ohio and this research is approved by
the Miami University IRB protocol ID#02038r.

Potential subjects were invited to participate in the study
via email, social networks, and flyers. Participation was
completely voluntary. Declining to participate did not in-
volve any penalty or loss of benefits to which they were oth-
erwise entitled.

Figure 1: (a) Glasses augmented with IMU Sensors (b) In-
ternal Structure of the IMU Sensor

Discrete Activity Data Collection
As already stated before, we have chosen a set of five distinct
activities shown in Table 1 and asked the users to perform

3https://mbientlab.com/metamotionc/
4https://mbientlab.com/tutorials/MetaBaseApp.html

Table 1: Class Labels of the 5 Distinct Activities (A1-A5)

Activities Labels
1 Sitting and Reading a Book A1
2 Sitting and Working at a Computer A2
3 Standing up from Sitting A3
4 Walking A4
5 Picking up Items from the Floor A5

Number of Activity Classes 5

those while wearing the smart glasses. We used a mid-size
room with a 15’ x 12’ containing a table and a chair.

The discrete activity dataset contains time-series data gen-
erated by a triaxial accelerometer, a triaxial gyroscope, a tri-
axial magnetometer, and a pressure sensor (Barometer). In
Figure 2, we have shown the accelerometer data patterns
for the five activities A1-A5. We can see that the patterns for
sedentary activities are different from those of ambulatory
and transitional activities.

Continuous Activity Data Collection
Continuous data collection refers to a procedure during
which a participant performs a series of pre-specified ac-
tivities while wearing sensor-augmented glasses. In order to
standardize the set of activities for possible replication of the
experiments to validate our results by any future researchers,
we have decided to select the Timed Up and Go (TUG) Test.

Timed Up and Go (TUG) Test: The ‘timed up and
go test’ (TUG) is a simple and popularly used clinical
performance-based measure among the elderly to test func-
tional mobility and detect the probability of falls [Nguyen
et al. 2015]. The test requires only a few minutes, is easy to
administer, and requires minimal equipment like a chair with
a solid seat without any armrest and a flat back, a cellphone
stopwatch, a distant marker (small red cones for our case),
and proper walking shoes. The TUG test is used as a model
of simple activities that consists of a continuous execution
of four common activities shown in Fig. 3. To match our
discrete activities, we have considered mainly the following
four distinct TUG activities - Sitting, standing up, walking,
and sitting down. The inertial sensor was placed firmly on
the right temple of the glasses and data was collected from
23 healthy participants. The complete TUG test was per-
formed 5 times with 10 seconds gap in between. However,
the time to complete the entire TUG test is not measured by
us as it is not a concern for our activity recognition research.
The continuous data collection process was video recorded
(with the participant’s permission) for labeling purposes.

Processing and Analyzing TUG Test Data: At first, we
labeled the video of the Continuous Activity through soft-
ware called Lossless Cut5. We then matched the sensor data
collected through the Metawear sensor with the video. Fig. 4
has the graphical visualizations of the TUG dataset of a per-
son. We can observe how the signal values in the X, Y, and
Z axes vary for a time period of 1 min and 20 seconds. For
better visualizations we have filled in colors for each activity
timeline, the green color area is for the sitting activity (A1),

5https://github.com/mifi/lossless-cut



Figure 2: Accelerometer Sensor Data Pattern for activities (a) Sitting and Reading a Book, (b) Sitting and Working at a Com-
puter, (c) Standing up from Sitting, (d) Walking, and (e) Picking up items from the Floor

Figure 3: The TUG path and the major four activities per-
formed during a TUG. These transitions are: 1) sitting, 2)
sit-to-stand 3) walking, and 4) stand-to-sit

the plum for the sit-to-stand activity (A3), the light cyan for
the walk and turn activity (A4) and pink for the stand to sit
activity (A3). We have used the same activity labels as in
the discrete data streams. Since sit-to-stand and stand-to-sit
transitions are considered together as discrete activity A3,
therefore, we have used the same label for both transitions
in the continuous activity.

Figure 4: Analysing TUG video files of two participants.
The continuous activities (color-coded)are (1) sit, (2) sit-to-
stand, (3) walk, and (4) stand-to-sit. This cycle is repeated
five times for each participant.

Experiment with Discrete Activities
In this section, we describe the different evaluation methods
we have applied to the discrete activity time-series data and
discuss the performance results with a thorough analysis.
First, we describe the machine learning-based classification
algorithms followed by the deep learning algorithms applied
to the discrete activity data streams. Our machine learning
algorithms are executed on a workstation computer having
Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz processor with
12 cores, 128 GB RAM, and a 64-bit Windows operating
system. We used Python for data processing. The deep learn-
ing algorithms have been run on the GPU of Google Colab.

Discrete Activity Detection using Machine
Learning
Data Segmentation and Feature Generation: After the
raw data was collected via the different sensors, an impor-
tant part of the pre-processing step was segmentation for
feature extraction and training. We followed the sliding win-
dow technique, where we conducted data segmentation with
50% overlap of consecutive time windows [Lau and David
2010]. As the selection of the window size plays an impor-
tant factor in classification performance, we have conducted
experiments by varying window sizes from 1 - 5 seconds.
As generating the right features plays an important role in
machine learning, for each window we have handcrafted 22
different features like abstract values, means, and variances
of accelerometer and gyroscope readings across the X-, Y-
, and Z-axes. To select only the most relevant features, we
applied dimensionality reduction using the Maximum Rel-
evance Minimum Redundancy (MRMR) algorithm [Zhao,
Anand, and Wang 2019] and selected a subset of 18 features
having minimum correlation among each other.

Algorithms and Experiment: We performed 10-fold
cross-validation on the training datasets (five datasets for
five window sizes) with a random 80:20 split between the
training and validation datasets. In order to increase the ef-
ficiency of the individual features on the training dataset we
have applied a StandardScaler where the mean of the ob-
served value is 0 and the standard deviation is 1. We used
five different machine learning algorithms for discrete ac-
tivity recognition - K Nearest Neighbor (KNN), Random
Forest (RF), Support Vector Machines (SVM), Decision
Tree (CART), and Naive Bayes (NB). We conducted hyper-
parameter tuning to find the best parameters for each of the
five different classification algorithms and optimized our re-
sults. Once the best parameters were found, we retrained
our model and carried out the final evaluation on the test-
ing dataset to achieve the final results as discussed in the
following section.

We ran the experiments on the five datasets for 10 times
each and reported the mean corresponding to window sizes
of 1 to 5 seconds.

Performance Results: Our results show that the best per-
formance has been achieved for the 5-second window size
for the Random Forest (RF) Classifier with 1000 number of
trees as the hyper-parameter. For the RF model, the train-
ing accuracy was 88% and the validation accuracy was 89%



which showed that the model did not overfit. The ROC AUC
score with One versus Rest (OvR) of RF was also high with
98% for a 5-sec window.

For all activities (A1-A5) Random Forest has the best F1-
Score with class A4 having the highest accuracy of 96%.
We show the class-wise accuracy of RF with the 5-second
window in Fig. 6a.

Comparison with the State-of-the-art: In our previous
work in ActiviSee [Raychoudhury, Yu, and Kiper 2022] we
used the same dataset and applied the same five machine-
learning algorithms. However, the major difference was that
we used TSFresh Package [Luqian and Yuyuan 2021] to
compute 7924 features (both time and frequency domain)
and applied Maximum Relevance Minimum Redundancy
(MRMR) for dimensionality reduction to select 25, 50, 75,
and 100 best features. We achieved the highest accuracy of
87% with SVM and 85% with RF. Since calculating 7924
features is resource intensive, in the current paper, we hand-
crafted only a few simple time domain features and achieved
an even higher accuracy of 89% (for the RF model) with
proper parameter tuning. This is possibly due to the fact that
the handcrafted feature selection method has a low com-
putational cost and high discriminatory ability of time do-
main features. Since some researchers argue that shallow
features are not enough to train a human activity recogni-
tion (HAR) model and struggles to recognize high-level or
context-aware activities, we have also trained a few deep-
learning models where the feature has been learned automat-
ically from the raw data in the network. We achieved an ac-
curacy of 95% with deep learning which is much higher than
both our previous work and the current handcrafted feature-
based discrete activity recognition model. In the following
subsection, we discuss our deep-learning models in detail.

Discrete Activity Detection using Deep Learning
In Human Activity Recognition, generating handcrafted fea-
tures is challenging as it depends on the researcher’s do-
main knowledge and the performance of the machine learn-
ing techniques and is very much dependent on data rep-
resentation[Ramasamy Ramamurthy and Roy 2018]. There
are no universal methods for selecting the appropriate fea-
tures. However, in deep learning, the raw data is directly fed
to the model as input and the features are learned hierar-
chically from it by some non-linear transformations. Deep
learning has been very popular in activity recognition, and
the widely-used techniques include Deep Neural Networks
(DNN), Convolutional Neural Networks (CNN), Long-short
Term Memory (LSTM), Recurrent Neural Networks (RNN),
etc. In this model, we have considered the X, Y, and Z axes
of the accelerometer and gyroscope sensors (a total of 6
raw features) as the raw input to the deep learning model.
Our target is to predict the class label i.e., the ‘activity’ that
we want to predict. For the data cleaning process, we have
dropped all the null values. We ran the training set of the 3
deep learning models for the discrete dataset for 23 partici-
pants for a minimum of 100 and a maximum of 400 epochs
for a 1-second window with 80% overlap.

• Deep Neural Networks (DNN): The raw dataset was di-

vided into two different train-validation splits - 80:20 and
70:30. Initially, we trained the dataset with a number of
hidden layers from 1 to 5, varying the number of neurons
per layer from 50 to 200. The batch size of the model
was 100. We have used ReLU (Rectified Linear Unit) for
the activation function, Adam Optimizer with a learning
rate of 0.01, and Cross Entropy as the loss function. The
DNN network is a good fit for the model as the gap be-
tween the training loss and validation loss is minimum.
However, as shown in Table 2, we could not achieve good
accuracy using DNN with either split even by varying the
parameters.

• Convolution Neural Network (CNN): We have trained a
CNN model with our dataset as CNN has several impor-
tant advantages over other deep neural networks. CNN
is noise resistant and is able to extract time-independent
deep features. Here, the raw data from the accelerometer
and gyroscope sensors were sampled in a fixed length of
1-second sliding window with 80% sample overlap (80
readings/window) between consecutive windows. For the
experiment, we segmented a total of 1382240 accelerom-
eter and gyroscope input data samples into input signal
of batch size 100. The convolution blocks each consist-
ing of 128 and 64 filters, computed the dilations between
the cells with a kernel size of k = 3 * 3. After the 2 convo-
lution layers, we have added a dropout layer of 0.5. Af-
ter the dropout, the second convolution layer is followed
by a max-pooling layer that calculates the maximum or
largest element in the feature map. The pooling kernel
size is 2. After the transformations and convolutions, the
vector is flattened of complex features that have infor-
mation about the original time series in a frequency of a
wide range and time scale domains. The vector is then fed
to a 2-layered fully connected neural network with 100
hidden neurons in the first layer and the Softmax activa-
tion function in the last layer. We considered 2 different
splits of train-validation - 70:30 and 80:20, the results of
which are shown in Table 2. We observed that the CNN
model performed better than DNN.

• Long Short-Term Memory (LSTM): LSTM models are
very popular for time-series forecasting. It learns a func-
tion that maps a sequence of past observations as input
to an output observation. First, we split the dataset into
70-30 and 80-20 train and validation sets. As the LSTM
expects a fixed-length sequence for training the model,
we have used a sliding window technique where each
window corresponds to 1 second of accelerometer and
gyroscope readings. We have considered 80% of overlap-
ping data and applied the Stacked LSTM to our labeled
dataset directly maintaining the temporal sequence. We
trained the model with a batch size of 128 and a learning
rate of 0.01. Our Stacked LSTM architecture consisted of
3 hidden LSTM layers. The LSTM layer above provided
the sequence output to the LSTM layer below. In order to
prevent overfitting of the model and to improve its per-
formance, we added a regularization method called the
Dropout layer after every hidden layer. This probabilis-
tically excluded the activation and weight updates dur-



Table 2: Discrete Activity Detection using Deep Learn-
ing Models. Training and Validation Accuracies for LSTM,
CNN, and DNN

DNN CNN LSTM
70-30 80-20 70-30 80-20 70-30 80-20

T V T V T V T V T V T V
0.654 0.6495 0.658 0.653 0.962 0.837 0.968 0.856 0.998 0.945 0.997 0.952

Table 3: Discrete Activity Detection using Deep Learning
Models. Results for LSTM and CNN

3*ACTIVITY CNN LSTM
70-30 80-20 70-30 80-20

P R F1 P R F1 P R F1 P R F1
A1 0.83 0.84 0.83 0.87 0.84 0.86 0.95 0.94 0.94 0.94 0.96 0.95
A2 0.84 0.81 0.82 0.85 0.84 0.84 0.94 0.94 0.94 0.95 0.95 0.95
A3 0.85 0.83 0.84 0.87 0.84 0.86 0.95 0.94 0.95 0.95 0.95 0.95
A4 0.81 0.88 0.85 0.84 0.89 0.86 0.95 0.95 0.95 0.96 0.95 0.96
A5 0.85 0.83 0.84 0.85 0.87 0.86 0.94 0.95 0.94 0.96 0.95 0.95

ing the training phase and reduced the overfitting to 0.2.
Without the Dropout, our model overfitted by more than
0.5. Two dense layers also known as the fully connected
layer are added at the end of the neural network. The acti-
vation function used is ReLU and Adam Optimizer with
a learning rate of 0.01. Our LSTM model achieved ac-
curacies of 94% and 95% respectively for two different
train-validation splits - 70:30 and 80:20 as shown in Ta-
ble 2 with cross-entropy loss equal to 0.2. The change of
training and validation accuracies and losses over itera-
tions are shown in Fig. 5a and Fig. 5b.

(a) Change of Accuracies in
LSTM

(b) Change of Loss in LSTM

Figure 5: Change of Train and Validation Accuracy and Loss
Graphs for Best Deep Learning Model (LSTM) with 80:20
Split and 400 Epochs

Summary of Results: In our research, activity A3 is the
transitional activity from sitting to standing and is of utmost
importance for alerting the user to change glasses. We can
see that both for the discrete activity detection techniques
using ML and DL models the F1 score of A3 is reasonably
high. For, Random Forest ML model it is 86% and for the
LSTM-based DL model, it is 95%.

Experiment with Continuous Activities
In order to test the robustness of our discrete activity de-
tection models we conducted more experiments to success-
fully achieve continuous activity recognition with high ac-
curacy using the cost-effective ML models discussed above.

(a) The Random Forest Confusion
Matrix with 5-second window

(b) Confusion Matrix for LSTM
with 80:20 Split and 400 Epochs

Figure 6: Confusion Matrices for Best ML model (RF) and
Best DL (LSTM) Model.

We have experimented with the TUG test data of 7 partici-
pants and have discussed the results below.

Performance Results
For continuous activity recognition using the TUG Data,
we have used 1-second sliding window-based data segmen-
tation with 50% overlap and applied the Random Forest
model which produced the best results for the discrete ac-
tivity recognition. In TUG data, we focused on four pri-
mary activities - Sitting (A1), Standing up from Sitting (A3),
Walking (A4), and Sitting from Standing (A3). We dropped
discrete activities Sitting and Working at a Computer (A2)
and Picking up Items from the floor (A5) from the training
set as they are not relevant to the TUG activities. The RF
model which was previously trained on the discrete activity
dataset was used to predict the class labels of continuous ac-
tivities from the labeled video data. We calculated the dura-
tion of each activity in seconds and tried to predict the label
of the activity in that particular duration. We predicted the
activities of 7 participants with maximum accuracy of 91%.
The Precision, Recall, and F1-Scores of four sample partic-
ipants have been shown in Table 5. Although the F1-Score
was pretty good for A1 and A4, it suffered for A3. In order to
increase the overall accuracy of the model we implemented
a Post-Process method by adjusting model prediction based
on common sense. Activity A3 should take place once be-
tween the sitting (A1) and walking (A4) activities. Thus, the
Post-Process method added A3 in between A1 and A4, if it
did not appear in the predicted label sequence (i.e, a person
cannot start walking from a sitting position without standing
up). Also, the A3 should not happen for more than 1 second.
So, if there are multiple A3S occurring simultaneously, we
converted the additional A3 to A1 or A4 depending on the
previous activity.

In Fig. 7, the top one in red represents the raw predicted
label sequence using the RF model on the TUG dataset; the
middle one in green represents the label sequence after ap-
plying the Post-Process method; and the bottom figure repre-
sents the ground truth. We observe that the model incorrectly
predicted some activity as A3, and believe that incorrect pre-
diction is caused by the differences in the manner in which



Table 4: Mean and Standard Deviation of Accuracy for RF-
predicted and Post-Processed Result of 7 participants for
Continuous Activity Detection

2*Accuracy Pre-Processed Result Post-Processed Result
0.73 + 0.11 0.78 + 0.12

Table 5: Precision, Recall and F1-Score of 4 Participants for
Continuous Activity Detection

2*ACTIVITY Participant1 Participant2 Participant3 Participant4
P R F1 P R F1 P R F1 P R F1

A1 1.00 0.95 0.97 0.81 0.84 0.82 0.89 0.89 0.89 1.00 0.64 0.78
A3 0.70 0.70 0.70 0.50 0.30 0.37 0.71 0.45 0.56 0.47 0.73 0.57
A4 0.92 0.95 0.94 0.93 0.98 0.95 0.92 0.98 0.95 0.94 1.00 0.97

different users perform a particular activity. However, those
incorrect predictions have been effectively corrected by the
post-process method using logical reasoning.

Figure 7: RF Model Predicted Label Sequences [Red]; Post-
Processed Label Sequences [Green]; Ground Truth Label
Sequences [Blue]

After applying the Post-Process method we could see
from Table 6 that the accuracy did improve for some of the
participants though not for all, like for participants 2 and 3
it did get better. From Table 4 we can see that the mean in-
creased for 7 participants.

Discussion & Conclusion
Users with visual impairments who use multiple single fo-
cal length glasses for different daily activities which require
different focal lengths (like sedentary and ambulatory activ-
ities) must remember to change from near to distant vision
glasses as and when required in order to avoid trip hazards.
Since users often forget to change glasses, it may lead to
falls and injuries which are fairly common. In this research,
we have collected sensor data from 23 healthy subjects while
they perform a number of discrete and continuous activities
wearing a pair of smart (sensor-augmented) glasses. The in-
ertial sensor data streams while classified using certain ma-
chine learning and deep learning algorithms show promis-
ing results (89-95% accuracy) in distinctly recognizing the
activities and the transitions between them. We have further
applied one of the classification models to uniquely identify

Table 6: Change of Accuracy after Applying Post-
processing Method

Participant 1 Participant 2 Participant 3
Prediction
Accuracy

Post-Processed
Accuracy

Prediction
Accuracy

Post-Processed
Accuracy

Prediction
Accuracy

Post-Processed
Accuracy

0.911 0.911 0.652 0.863 0.773 0.892

continuous activity data streams and have achieved an accu-
racy of 91%. In the future, we plan to extend our research to
include more participants and various other activities. Over-
all, the ActiSenSee system proves to be useful for users who
use multiple singe-focal length glasses for different activi-
ties.
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