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Abstract

Recent advances in multimodal Human-Robot Interaction
(HRI) datasets feature speech and gesture. These datasets pro-
vide robots with more opportunities for learning both explicit
and tacit HRI knowledge. However, these speech-gesture HRI
datasets focus on simpler tasks like object pointing and push-
ing, which do not scale easily to complex domains. These
datasets focus more on collecting human command data but
less on corresponding robot behavior (response) data. In this
work, we introduce NatSGD, a multimodal HRI dataset that
contains human commands as speech and gestures, along
with robot behavior in the form of synchronized demon-
strated robot trajectories. Our data enable HRI with Imita-
tion Learning so that robots can learn to work with humans
in challenging, real-life domains such as performing com-
plex tasks in the kitchen. We propose to train benchmark
tasks that enable smooth human-robot interaction, including
1) language-and-gesture-based instruction following and 2)
task understanding (Linear Temporal Logic formulae predic-
tion) to demonstrate the utility of our dataset. The dataset and
code are available at http://snehesh.com/natsgd website.1

Introduction
Humans communicate with each other by spontaneously
using language and gestures (p.230 in (Tomasello 2010)).
The reason is that language-based information is effective at
communicating explicit knowledge, while more tacit knowl-
edge and behavior-based communication is effective at con-
veying tacit knowledge but often too costly to represent ex-
plicit tasks. Moreover, many everyday tasks, such as cooking
and cleaning, are a mixture of explicit and implicit informa-
tion.

If robots could collaborate in a human-like (i.e. more
natural) way, it would reduce the cognitive load for hu-
mans. This points to a need for datasets that can help robots
learn to effectively incorporate more natural human ad-
vice into both language and gestures. However, the major-
ity of HRI datasets that enable fantastic collaborative robots
like Google Home, Amazon Alexa, and Apple Siri, solely
rely on speech as a communication channel (Novoa et al.
2017; James, Tian, and Watson 2018; Vasudevan, Dai, and
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Van Gool 2018; Narayan-Chen, Jayannavar, and Hocken-
maier 2019; Padmakumar et al. 2022). On the other hand,
many other HRI datasets like (Pisharady and Saerbeck 2015;
Shukla, Erkent, and Piater 2016; Mazhar et al. 2018; Chen
et al. 2018; Chang, Tejero-de Pablos, and Harada 2019;
Gomez Chavez et al. 2019; Neto et al. 2019; Nuzzi et al.
2021; de Wit, Krahmer, and Vogt 2021), only focus on ges-
tures when humans interact with robots (Luan et al. 2016).
Some works propose HRI datasets involving both speech
and gestures (Matuszek et al. 2014; Rodomagoulakis et al.
2016; Azagra et al. 2017; Chen, Leu, and Yin 2022). How-
ever, these works focus on the perception aspect of HRI
tasks like recognizing which object a human is referring to in
the form of simple colors and shapes and tasks like picking
and placing. For complex real-world objects and tasks, peo-
ple use a wide variations of features, vocabulary, and styles
to refer to objects and actions.

Therefore, in this work, we aim at creating a novel HRI
dataset that: 1) resembles natural communications includ-
ing both speech and gestures, 2) helps robots learn com-
plex tasks like cooking and cleaning that are valuable in
our everyday life, and 3) includes demonstration trajecto-
ries due to the complexity of tasks. Specifically, we designed
a wizard of Oz (WoZ) experiment (Dahlbäck, Jönsson,
and Ahrenberg 1993) where participants interacted naturally
with what they believed was a highly capable autonomous
humanoid. We use the outcome of these experiments to form
our main contribution, NatSGD, a natural communication
dataset (Fig. 1) that provides novel missing speech and ges-
ture data along with paired robot demonstration towards task
completion. Furthermore, NatSGD consists of data from
the point of view of the speaker, states of the objects and
the robot, human-annotated speech, gesture, gesture types,
the body parts involved, the corresponding robot trajecto-
ries generated from expert teleoperations, robot’s point-of-
view (Ego View), depth, scene and object instance segmen-
tation, and semantic segmentation (see Fig. 2). NatSGD has
1143 commands given by 18 people with 11 actions, 20 ob-
jects, and 16 states. We propose two important HRI bench-
mark tasks, Language-and-Gesture-Based Instruction Fol-
lowing and Human Task Understanding, to demonstrate a
great potential of promoting fundamental HRI research with
our dataset.

To the best of our knowledge, our NatSGD dataset is the



Figure 1: NatSGD contains speech, gestures, and demonstration trajectories for everyday food preparation, cooking, and clean-
ing tasks. The NatSGD dataset potentially enables the learning of complex human-robot interaction tasks due to the rich in-
teraction modalities and strong supervising signals at both trajectory-level (demonstrations) and symbolic-level (ground-truth
activities that match humans’ intention).

first HRI dataset that includes speech, gestures, and demon-
stration trajectories for robots to learn complex tasks during
cooking and cleaning – tasks that are ubiquitous in our ev-
eryday lives.

The paper is structured as follows: Section 2 (Related
Work) will compare and contrast other HRI datasets and
highlight the need for our dataset. Section 3 (NatSGD
Dataset) will provide a detailed account of the design and the
careful considerations in the creation and annotations of the
dataset. Section 4 (Evaluation Tasks) will include the bench-
marks tasks that are proposed. In section 5 (Conclusion), we
summarize our work and highlight our contribution.

Related Work
As mentioned in the Introduction section, there are various
datasets that adopt either speech or gestures as communi-
cation modalities. In this section, we focus on discussing
the datasets that involve both communication modalities. We
further discuss how those datasets can enable the learning of
HRI systems.

Datasets for Speech-and-gesture-based HRI Many
Speech-and-Gesture datasets do not involve a robot. For
example, the HRI datasets presented in (Azagra et al. 2017)
and (Rodomagoulakis et al. 2016) completely focus on
perceptual tasks. (Azagra et al. 2017) aims at solving tasks
like interaction recognition, target object detection, and
object model learning, whereas (Rodomagoulakis et al.
2016) addresses tasks like visual gestures recognition and
audio command phrases recognition. (Lee et al. 2019)

and (Kucherenko et al. 2021a) presents gesture-speech
multimodal human-human conversation datasets that have
a potential of training robots for HRI scenarios. Unlike the
above datasets, there are also a few that demonstrate values
for robotics research. (Matuszek et al. 2014) introduces a
HRI dataset in which humans use both gesture and language
to refer to an object. Robots learn to recognize the referred
object and push that object away. Similarly, (Chen, Leu,
and Yin 2022) collects a speech and gesture dataset and
demonstrates its value on a robotic pick-and-place task
in the HRI settings. The pick-and-place system works
by having robots recognize target locations by observing
humans’ speeches and gestures and then inputting the target
region to a motion planner. In contrast to these datasets,
our NatSGD dataset includes demonstration trajectories and
thus enables the robot learning of more complex tasks like
cooking and cleaning. The importance of including demon-
stration trajectories in HRI datasets is also acknowledged
by a recent dataset paper (Padmakumar et al. 2022), which
however does not consider gestures.

Robot Applications on HRI Datasets The HRI commu-
nity also lacks robot learning works that involve training
deep neural networks on HRI datasets. The aforementioned
HRI works (Matuszek et al. 2014; Chen, Leu, and Yin 2022)
put more focus on the perceptual aspects of using their col-
lected datasets and therefore only applies perception outputs
(e.g. the pose of recognized object) to an engineered robotic
system. Similarly, (Krishnaswamy and Pustejovsky 2020)
provides a formal analysis on the multimodal recognition



of referred objects in HRI. (Ahuja et al. 2020; Habibie et al.
2021; Kucherenko et al. 2021b; Habibie et al. 2022) research
the correlation between speech and gestures that could lead
to better gesture recognition or generation functions. How-
ever, these works do not really involve robots. (Codevilla
et al. 2018) introduces an imitation learning framework that
is conditioned on human language commands. Their frame-
work allows the behavior of autonomous cars changed by
human users in testing phase. In contrast to this work, we
evaluate our dataset on imitation learning that is conditioned
on both language and gesture commands for instruction fol-
lowing.

NatSGD Dataset
NatSGD Dataset aims to address gaps in the current datasets
to address naturalness and usefulness from research to real
life application. For such a human-robot interaction dataset
for robot learning to be useful, it has to be complete and
comprehensive. Ideally, on the human side, the participants
and their behavior needs to be controlled for bias. On the
robot side, the robot needs to be capable and the simulator
needs to be realistic so that the humans interacting with it
will believe and trust it. Interactions should be natural so
that the behavior spontaneously emerges based on subject’s
own free will, without being primed by the researchers. And
applicability of the data needs to be versatile such that it can
be used for many robot learning tasks. To this end, the fol-
lowing sections highlight the key considerations and aspects
of NatSGD that make it novel and useful.

Humans and Bias
It is important for the data to be fair and well understood.
People have implicit and explicit biases (Banaji and Green-
wald 2013) and data can inherit these biases. It is impor-
tant to control for biases from both technical machine learn-
ing perspective, as well as, the societal implication perspec-
tive. Human background such as gender, age, expertise, cul-
ture, and personality were considered. Additionally, individ-
ual experience in the form of NASA-TLX work load (Hart
2006) and their impression of the robot were also recorded.
Robot’s gender, approachability, and naturalness were con-
sidered in the design of the robot face, name, and move-
ments. These are detailed in the appendix Robot Face and
Name section.

Eighteen subjects of ages 18 to 31 years (Mean
20.91±3.75), participated in this experiment (9 male and 9
female.) Their personalities were identified as Extroversion
(5.56±2.09), Agreeableness (9.17±1.15), Conscientiousness
(8.17±1.38), Emotional Stability (7.56±1.79), and Openness
to Experience (7.89±1.47). Equal distribution of technical
to non-technical background participants were chosen based
on their first-hand exposure to high-tech games and toys and
their education or profession as computer science and en-
gineering. No participants had prior interaction with robots
before the study. Please see appendix for more details in Par-
ticipants section.

We transcribed human speech into text and extracted their
word embedding using Glove model (Pennington, Socher,

and Manning 2014). Similarly, we extracted human poses by
using OpenPose (James, Tian, and Watson 2018) and used
a sequence of human pose vector as the gesture low level
feature.

Robot and Realism
Anyone who has worked with a real robot to accomplish
a real life household task understands how difficult it is.
Kitchen tasks like cutting a vegetable with a knife might
be simple for humans, but they are extremely challenging
for a robot. So, there are many challenges of conducting
HRI experiments on a real robot. It is even more challeng-
ing when there is a real-time requirement such as collecting
a natural interaction dataset. Inspired by recent progress in
sim2real research (Abeyruwan et al. 2022; Kaspar, Osorio,
and Bock 2020), we designed and developed our photore-
alistic simulator. We created a real-time robotics simulator
using Unity3D (Unity Technologies 2021), a game engine,
that can be be controlled by a researcher quickly based on
the subject’s commands. Therefore, HRI data with a sim-
ulator opens many opportunities for pushing forward HRI
research especially when we have complex real-world en-
vironments and tasks. Our research also opens a door for
future sim2real research that handles HRI settings.

The Simulator As shown in Fig. 2, the NatSGD Robot
Simulator was built using Unity 3D along with modified
ROS plugin (Bischoff 2021). The system ran on a com-
puter with Intel i7 Gen 16GB RAM connected to the 55”
TV in order to ensure smooth realistic rendering and pro-
cessing in real-time. On the top right corner of the screen,
a camera feed of the participant was overlayed as shown
in Fig. 1. This served as a feedback mechanism to the par-
ticipants to feel the robot could see them and to help them
stay within the frame. The robot real-time inverse kinemat-
ics (IK) of the head movement and robot arms were imple-
mented with BioIK (Starke et al. 2017; Starke, Hendrich,
and Zhang 2018). The robot looked at the target object(s)
to demonstrate robot’s attention while performing a task.
When the robot was ready to interact with the subject for
the next command, the robot looked back at the participant.
The detailed output from the simulator includes the human
and robot perspectives. It also includes the object states and
robot trajectories which are detailed in Ground Truth La-
bels section. Activities like pouring and cutting have causal
sub-activities. For example, for cutting a tomato, the robot
needs to locate a knife and grasp it. It then needs to approach
the tomato on the chopping board, hold it stable, and finally
make its first cut, then follow up with subsequent slices.
These are seamlessly implemented in the simulator.

Interaction and Naturality
Data of natural interaction is important to capture human
behavior. The robot can learn from these natural cues that
are unstructured, mixed-modal, and consists of implied con-
texts. They even contains contradictory phrases and repair-
ing mechanisms. To incite natural human behavior in the
lab is challenging. We took inspiration from prior literature,
conducted a number of pilot studies, and came up with WoZ



Figure 2: Our Simulator that shows Baxter cutting onions into pieces. The simulator includes multi-view perspectives of the
scene and the robot from fixed and moving cameras. The top row shows human-first-person view, the ceiling top left, the
counter bottom right, and counter bottom left cameras in the kitchen. The bottom row shows robot’s egocentric view in RGB,
depth, unique object segmentation, and category based semantic segmentation. These perspective are useful for robot to learn
to complete the tasks based on human speech-gesture commands and it’s own observation of the world and object states.

experiment design to incite natural emergent human behav-
ior.

Pilot Studies To achieve the best of both worlds of in-the-
wild and controlled lab study, our WoZ experiment design
deceives the participants into believing the robot is fully au-
tonomous. We then conducted multiple pilot studies to val-
idate factors that could affect participant behavior to val-
idate independent and dependent control variables as well
as the workflow. We experimented with the (a) background
noise (see appendix Background Noise section), (b) per-
ceived robot personality and capability based on the robot’s
face and name (see appendix Robot Face and Name section),
(c) staging to keep the participants engaged (see Staging sec-
tion), (d) considerations of the priming effects from practice
sessions (see appendix Practice Session section), (e) WoZ
clues that participants might be able to use to figure out the
hidden agenda (see appendix WoZ Cues section), and (f) the
effect of experiment instructions (see appendix Instruction
section). These findings informed our experiment design de-
cisions.

Expert Demonstration and WoZ Control Policy For
both practice and the data collection sessions, the researcher
facilitator (wizard) controls the workflow to move ahead
as long as the participant’s command is related to the task
at hand and is discernible. Robot nods “yes” (head up and
down motion) on commands that robots understood. For un-
intelligible or unrelated commands, the robot displays the
confusion face. For example, if a participant gestures to
move right, or say move right, the wizard makes the robot
move right. However, if the participant mumbles and the
wizard cannot hear the participant, the wizard prompts with
a confused robot face for clarification from the participant.
The clarification repair prompt (e.g. a confused face anima-

tion) is intentionally designed to be ambiguous so that the
participant attempts different strategies in providing instruc-
tions for the same task. The participant is allowed a max-
imum of five attempts per command. If unsuccessful after
that, the task is skipped. In rare cases, the task can also be
skipped, if the Unity game becomes frozen or Baxter is not
able to solve the IK for grasping objects for more than 30
seconds.

Staging As the participant and the robot do the share the
same immersive space, one challenge that we observed was
when the robot was not directly facing the person. The par-
ticipant sometimes loses the context, visibility, and frame of
reference. To account for this, we borrow techniques from
the 12 principle of animation, specifically staging (Thomas,
Johnston, and Thomas 1995) to gently move the camera to
a camera pose that gives a clear view of the key event. For
example, if the robot is pouring oil into the pan, we pick
camera angle 2 such that the pan is in the center, with the
robot in the background, and oil visible to one side of the
screen.

Versatile Applicability
We believe the dataset would be more useful if it can be
applied towards multiple use cases. To this end, NatSGD
consists of data in multiple modalities and multiple vantage
points from multiple subjects. It consists of long continuous
sequences with ground truth labels that are computationally
generated or annotated by multiple human annotators.

Supported Learning Tasks NatSGD can be used for low-
level tasks such as gesture recognition, speech recognition,
and object detection. For gesture recognition, a semantic
level recognition e.g. pointing to an onion is extremely use-
ful when paired with speech ”cut it into pieces.” Addition-



ally, gesture property recognition (intentional or uninten-
tional) classification is a practical applications in HRI. An
unintentional gesture could be a subject stretching which
could be mistaken for pointing. More importantly, NatSGD
can be used for high-level robot learning tasks such as
task understanding and instruction following. The high level
tasks are proposed to be evaluated as benchmark tasks for
this dataset and is elaborated in the Evaluation Tasks sec-
tion.

Ground Truth Labels The structure of this dataset has
been from a utilitarian perspective for robotics and machine
learning applications. NatSGD contains labels for each task
that were completed, for eg. cutting an onion or a tomato.
For each task, we also break them down into labels of the
their sub-task such as grabbing the knife, holding the onion,
and cutting are provided. We include synchronized data
from both robot and human perspectives.

Figure 3: Example of temporal annotation of the tasks, sub-
tasks, speech, and gesture of participant p40 with Fast Event
Video Annotation (FEVA (Shrestha et al. 2023)) tool.

On the human side, we temporally segmented human
commands as shown in Fig. 3. Based on modality, each com-
mand was annotated for consisting relevant speech and ges-
ture. We then further distinguished them based if they re-
ferred to objects or action. The gesture is annotated as con-
taining task-related (intentional) and task-unrelated (unin-
tentional) gestures. Finally, for all gestures, we also anno-
tated the role of each body part in task specific action/ object
reference and non-intent movements as illustrated in Fig. 5.
Please see appendix for more details in the Ground Truth
Labels section.

On the robot side, sequences of images are temporally
synchronized across all cameras along with the audio. The
depth images are generated by using the normalized distance
from the robot’s egocentric view. Additionally, individual
object’s unique segmentation and their object semantic seg-
mentation, based on their object categories such as food,
utensils, and appliances are also provided. NatSGD also in-
cludes expert trajectories of the end-effectors, head, and the
robot base that demonstrates how to perform the tasks, head
control, and robot navigation.

Figure 4: Gesture Type, Reference, and Body Parts Annota-
tion of participant p61 using FEVA Crowd tool.

Figure 5: In the example above, participant p58 says “Bax-
ter, stir the pot”, with right hand showing the stirring gesture
while the body shifts to his left with head and left hand mov-
ing that could be read as being unsure. Here ’stir’ is speech
action, ’pot’ is speech object, while right hand is gesturing
for stirring task action, the head, torso, left hand and right
leg are unintentional gestures.

Reliable and Robust Data We carefully take iterative
steps to prepare the data to ensure integrity, quality, validity,
and fairness. We calibrated and synchronized all the cam-
eras audio-video. We compressed the final video to a lossless
high quality data format. Multiple people annotated our data
using Fast Event Video Annotation Tool (FEVA (Shrestha
et al. 2023)) (see Fig. 3) and FEVA crowd (see Fig. 4). We
annotated each label at least twice with up to three rounds
of agreement checks for purposes of speed and reliability.
We computed the inter-rate reliability (IRR) (Cohen 1960)
and our annotation was updated in three rounds. Detailed
breakdown of the IIR and the statistics are available in the
appendix in the Inter-rater Reliability section.

Evaluation Tasks (Proposed)
We propose to evaluate our dataset on several benchmark
tasks that are fundamentally important to enable smooth



human-robot interaction. In particular, we consider 1) Robot
learns to follow humans’ instructions in the forms of speech
and gestures; and 2) Understanding the task that is speci-
fied by a pair of human speech and gestures – formulated as
learning a mapping from a pair of speech and gestures to a
Linear Temporal Logic formula.

Language-and-Gesture-based Instruction
Following
To the best of our knowledge, there is no robot instruction
following works that takes both of speech and gestures at the
same time. We therefore decide to adapt a work of language-
conditioned imitation learning for robot manipulation (Step-
puttis et al. 2020) to take gestures and speeches together.
Their work uses semantic data from GloVe embedding (Pen-
nington, Socher, and Manning 2014) for language, Faster
RCNN (Ren et al. 2015) for images along with a single arm
robot trajectories for control steps. Their work uses simple
pick and pour tasks and simpler objects with two shapes,
two sizes, and five colors with speech in the form of struc-
tured typed texts. To scale this to everyday real-life complex
scenarios, NatSGD contains 11 distinct tasks and 20 objects
with variety of features. NatSGD contains unstructured nat-
ural human speech utterances. It also consists of natural hu-
man gestures including non-communicative/ irrelevant ges-
tures performed with relevant ones. Both speech and ges-
tures appear as sequences of single or multiple commands.
NatSGD contains two arms manipulation trajectories, head
tilt trajectories, and the whole body navigation trajectories.
In this benchmark task, we use robot ego view image, object
segmentation, human speech, and human gestures to learn to
generate location and manipulation trajectories to complete
the commanded task.

Human Task Understanding
Because we collect our dataset in a way how communica-
tions can naturally happen as if humans talking to each other,
there is no one-to-one mapping between a pair of a speech
and a gesture to a single activity in our dataset. For exam-
ple, when a participant says ”pour soup into the bowl”, it
implies multiple conditional sub-tasks such as fetching the
bowl and placing it close the pot. If the pot is covered, it
needs to be uncovered. It then needs to find the ladle, scoop
some soup, move the ladle without spilling over the bowl,
and pour into the bowl. And this needs to be repeated until a
desired amount is reached.

Therefore, we consider learning a mapping from speech
and gestures to a Linear Temporal Logic (LTL) formula
that describes a task (Pnueli 1977; Kesten, Pnueli, and Ra-
viv 1998; Konur 2013). LTL is a modal logic system that
can specify temporal relations among events (in the form
of formulae) and do logic reasoning based on those formu-
lae. Robotics and planning researchers have adopted LTL
to formulate high-level reactive task specifications (Finu-
cane, Jing, and Kress-Gazit 2010; Guo, Johansson, and Di-
marogonas 2013; Baran et al. 2021). An example is that
if we have a natural language task specification “Go to all
rooms on the first floor and then go to the second floor”,

we can convert it into an LTL formula as “F (∀room ∈
rooms s.t. floor1

∧
XF (floor2))1”, where F and X denote

finally and next respectively. With an F operator, all vari-
ables that are inside F must hold True to make the for-
mula satisfied. That said, the language-LTL conversion be-
comes non-trivial in natural human-robot interaction set-
tings. To truly infer the task that the human specifies, a
robot should also consider humans’ body language and
the robot’s current state. Take the speech in Fig. 1, “Cut
that into slices”, as an example. The robot needs to use
the human’s gesture of pointing to the carrot to under-
stand what is “that” in the speech. Also, since the robot
is not holding the knife, the human, while did not explic-
itly mention the knife, implies that the robot should grasp
the knife. Therefore, the converted LTL formula in that
scenario is: X ( G (C Carrot U Carrot FarFrom CT) & G
F (Carrot OnTopOf CB & Carrot CloseTo CB) & X ( G
(C Knife U Knife) & G (C Knife U Knife FarFrom CT) &
G (C Knife U Knife OnTopOf Carrot) & G ( ( C Carrot &
Knife CloseTo Carrot) U Carrot Pieces) ) ) ), where “X”,
“F”, “U”, and “G” are LTL operators that denote “neXt”,
“Finally”, “Until” and “Globally (Always)” respectively;
“C Carrot”, “Carrot FarFrom CT”, “Carrot CloseTo CB”,
and “Carrot Pieces” are grounded predicates that denote the
relations “gripper is close to the carrot”, “carrot is far from
the counter top”, “carrot is close to the cutting board”, and
“carrot state where it has been cut into pieces” respectively.

To the best of our knowledge, there is no work that learns
a mapping from natural language sentences and gestures to
an LTL formula. The closest work is (Wang et al. 2021),
which addresses the problem of learning to translate a natu-
ral language sentence to an LTL formula. We propose to add
a gesture encoder into this work together with the original
language encoder. Here the predicted LTL formula from a
pair of speech and gesture is more like a sub-task that a hu-
man is specifying to a robot. Based on a sequence of recog-
nized sub-tasks, we could further do shallow domain based
plan recognition (Zha et al. 2017; Zhuo et al. 2020), where
a planning domain is learned from sequences of sub-tasks.

Conclusion
In this work, we introduce NatSGD, a multimodal HRI
dataset with human commands in the form of unstructured
speeches and natural gestures, and robot behavior in the
form of synchronized demonstrated trajectories of robots.
We detail our meticulous experiment designs for collecting
natural human behavior while interacting with a robot to ac-
complish complex household tasks. We developed a photo-
realistic simulator that enables researchers to conduct tele-
operations. It also works as a learning platform for the robot.
The NatSGD dataset consists of rich annotations that facili-
tate the learning of multiple downstream household tasks.
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Appendix
Dataset Collection Additional Details
Participants Eighteen volunteers participated in this ex-
periment (9 male and 9 female) and received cash of
$10 each. Participants were recruited through posting fly-
ers around the university and using local mailing lists.
Participants’ ages ranged from 18 to 31 years (Mean
20.91±3.75). Their personalities were generally character-
ized as follows: Extroversion (5.56±2.09), Agreeableness
(9.17±1.15), Conscientiousness (8.17±1.38), Emotional Sta-
bility (7.56±1.79), and Openness to Experience (7.89±1.47).
Equal distribution of technical to non-technical background
participants were chosen based on our questionnaire and
post interview where we assessed their exposure to robots,
remote controlled or gesture controlled games or toys, and
their whether their education or profession was considered
to have a technology focus such as computer science and en-
gineering. None of the participants had ever interacted with
any type of robots before they participated in the study.

Lab Setup Participants were invited to the lab where
we showed the Baxter humanoid and video recording of
the robot performing kitchen actions that demonstrated the
robot’s ability to fetch items from a refrigerator, microwave
a dish, and prepare a salad (see Fig. 6). In addition, an we
showed another video of an interaction between Baxter and a
human where Baxter is following commands given by point-
ing or other demonstrations made by the body. We explained
that since these videos, we have made a lot of improve-
ments and wanted to understand how well the robot works
with people and how well people can work with the robot.
To be more believable, we explained that the robot motors
were slow, so for the timing constraint, we created a virtual
version of the robot that has the same AI engine. This al-
lowed the participants to interact with virtual Baxter through
a large monitor (55”) at a 7-10’ distance as shown in Fig. 7.
Data was recorded from three Stereolabs ZED cameras from
the front (camera 1), left and right at at approximately 30
degrees angle, at a resolution of 1280×720 px. (720p) at 30
frames per second (FPS). A single iPhone 6S also recorded
the participants audio and video in portrait mode at at a res-
olution of 720p at 30 FPS from approximately 15 degrees
angle.

Experiment Procedures i) Signing Up Participant fill out
a screening questionnaire to sign up. We collect information
about their demographics, contact info for scheduling, lan-
guage proficiency, and dominant hand information.

ii) Briefing Participants are welcomed and given a short
introduction of the lab and the work we are doing. They
then sign consent forms if they wish to continue. We show
recording of the past demonstrations of the humanoid per-
forming various kitchen tasks. They are explained that due
to the slow movement of the physical robot, they will be in-
teracting with a simulated version with the same artificial
intelligent brain.

iii) Simulator As shown in Fig. 2, the NatSGD Robot Sim-
ulator was built using Unity 3D (Unity Technologies 2021)
with modified ROS plugin (Bischoff 2021). The system runs

on a Intel i7 Gen 16GB RAM connected to the 55” TV. On
the top right corner of the screen, a camera feed of the par-
ticipant is overlayed as shown in Fig 1. This serves as a
feedback mechanism to the participants to help them stay
within the frame. The simulation runs based on ROS sto-
ryline module that we developed that helps us design the
workflow of the recipe in the Unity environment. ROS mes-
saging can (a) control camera angles for staging the desired
point of view of the scene and the robot (b) the video in-
structions of the step of the recipe (c) robot responses such
as head nodding, confusion face, and normal blinking face,
and (d) robot actions such as navigation or performing cook-
ing tasks. The robot navigation path was predetermined as
there were limited number of target locations while the real-
time inverse kinematics (IK) of the head nods and robot arms
were implemented with BioIK (Starke et al. 2017; Starke,
Hendrich, and Zhang 2018). To wait for participant com-
mand, the robot looks at the participant. Before performing
each task, the robot looks at the target object(s) to demon-
strate robot’s attention.

iv) Practice Session During the practice session, partic-
ipants interact with the robot to navigate the robot in dis-
crete steps in the kitchen and perform steps to cut an apple.
The practice session lasts roughly 5 minutes until the par-
ticipant feels comfortable. During practice phase, the par-
ticipants can interact with the research facilitator. After the
practice phase, once the data collection begins, they are not
allowed to ask any questions until the data collection session
was over.

Figure 6: Video Demonstration of the robot performing
kitchen tasks (a) mixing drinks (b) microwaving bowl (c)
cleaning up (d) fetch milk from fridge.

v) WoZ Control Policy For both practice and the exper-
iment sessions, the researcher facilitator (wizard) controls
the workflow to move ahead as long as the participant’s com-
mand is related to the task at hand and is discernible. Robot
nods “yes” (head up and down motion) on commands that
are understood. For unintelligible or unrelated commands,
the robot displays the confusion face. For example, if a par-
ticipant gestures to move right, or say move right, the wiz-
ard makes the robot move right. However, if the participant
mumbles and the wizard cannot hear the participant, the wiz-
ard prompts with a confused robot face for clarification from
the participant. The clarification questions are designed to be
ambiguous so the participant attempts different strategies in
providing instructions for the same task. The participant is
allowed a maximum of five attempts per command. If un-
successful after that, the task is skipped. In rare cases, the
task can also be skipped, if the Unity game becomes frozen
or Baxter is not able to solve the IK for grasping objects for
more than 30 seconds.

vi) Post Survey and Interview After the data collection,
participants are asked to fill out a survey providing their im-



pression of the robot, their own personality, and the work-
load experienced. We finally wrap up the session with a
semi-structured interview gathering additional details about
their experience and debriefing them of any information we
shared that was used to deceive them.

Background Noise One hypothesis was that background
noise can cause people to use more gestures. We considered
3 types of noise recording playback (lawn mower, people
talking, and music), but only tested with people talking as
background noise as that was the only example people found
to be believable and not simulated. We tested at 3 sets of
loudness (M (dB) = 58, 63, 70, SD = 10, 13, 15). In our study
(N=8), from people’s use of speech and gesture and the post-
interview, we found that (a) people tune out the background
noise, instead of using more gestures or, (b) people wait for
gaps of silence or lower level noise in cases of speech or
periodic noise, and (c) the noise had to be so loud that none
of the speech can be heard at all for them to use gestures
instead of speech. For these reasons, we decided not to use
background noise as an independent variable.

Robot Face and Name To reduce the affect of perceived
gender, age, and personality by manipulating facial at-
tributes, we considered the 17 face dimensions based on
(Kalegina et al. 2018) study to design the face of the robot
to be the most neutral face. The mouth of the robot was re-
moved as not having a mouth did not have significant ad-
verse effect on the neutral perception of the robot. Having a
mouth seemed to give people the idea that the robot could
speak, potentially causes the participant to prefer speech
over gesture. For the robot to appear dynamic, friendly, and
intelligent, we made the robot blink randomly between 12
and 18 blinks per minute (Takashima et al. 2008) with ease-
in and ease-out motion profile (Trutoiu et al. 2011; Thomas,
Johnston, and Thomas 1995). We further conducted pilot
tests to analyze the head nod motions (velocity and num-
ber of nods) and facial expressions for confusion expres-
sion. Additionally, we avoided using gender specific pro-
nouns “he/him” and “she/her” and referred to the robot as
“the robot” or “Baxter” which is also the manufacturer given
name printed on robot body that tends to be used both as a
male and female name (Wikipedia contributors 2021).

Practice Session During practice, it is important to make
sure that participants are not primed to use one modality ver-
sus the other. So steps were taken to design the session with
a mixture of related and unrelated commands where both
speech and gestures were used to command the robots. If
participants used a single modality only, they were encour-
aged to test out using the other modality. Participants inter-
acted with the robot and asked researchers questions during
practice. Once the practice was completed, participants were
not allowed to interact with anyone other than the robot even
if they had questions or felt stuck as they were told that the
experiment was designed for them to experience such sce-
narios and had to use creative methods make the robot un-
derstand what they wanted the robot to do.

WoZ Clues People can be quite intuitive in figuring out
the patterns such as key press and mouse click sounds cor-

responding to robot actions. We experimented with masking
the actual clicks and key presses with random ones. How-
ever, in the post interview the pilot test participants still seem
to be able to figure out that researchers might be controlling
the robot. So we created a soft rubber remote control keys
that use IR receiver using Arduino micro-controller USB
adapter to send keys to the WoZ UI with virtually no sound
that the researcher keeps in their pocket. With this imple-
mentation, during the experiment, the researchers made sure
when the experiment is being conducted, they do not sit at
the control computer and appear to be moving around doing
other things appearing busy, staring at their phone seemingly
distracted, or looking at the participants showing attention in
making sure the system was working without any technical
issues. With this implementation, 100% of the participants
believed that the robot was acting on its own and none of the
participants suspected the WoZ setup to be a possibility.

Instructions Based on the recommendations (Fothergill
et al. 2012), we tested various modalities for our applica-
tions. Our findings in our pilot studies were in-line with
(Fothergill et al. 2012; Charbonneau, Miller, and LaViola
2011) where the instruction modality had a significant im-
pact on the participants’ behavior. For instances where text
instructions were provided similar to (Cauchard et al. 2015),
participants preferred speech and used the exact words for
the action and the object with little or no gestures. With
videos of people performing the task similar to (Charbon-
neau, Miller, and LaViola 2011), participants copied the ex-
act style of the demonstration of the actor. The one with the
most variance in speech vocabulary and styles of gestures
were when we showed before-after video clips to show the
pre-task and post-task states, for example, to turn on a stove,
we showed a zoomed in video of a stove that was turned off,
and faded out to a video of the stove with fire burning. For
cutting apple, video of a whole apple on a cutting board be-
ing approached by a knife and faded into apple that was cut
into pieces where the knife is leaves the screen. And these
videos were repeated in a loop with a 1 second gap in be-
tween.

Story Line The experiment was organized for the partic-
ipants to spontaneously communicate with a robot by com-
manding it to follow step-by-step start-to-finish instructions
to prepare food in the kitchen. The food preparation steps
were designed so that most of the tasks were repeated at
least two times with different objects. The robot, in random
order, alternated between performing the task immediately
after the command was given and requiring the participants
to provide additional instructions or disambiguate the orig-
inal command. A vegetable soup recipe was designed for
the experiment and included prepping, cooking, and serving
steps. For prepping, the ingredients had to be fetched and
cut. The cooking steps included turning a gas stove burner on
and off, sauteing, stirring, seasoning, transferring, and cov-
ering/uncovering a pot. Serving the soup required fetching a
bowl and pouring the soup into the bowl and placing it on
the counter. The final steps included cleaning up by putting
away the pots and pans into the sink.



Figure 7: Experiment Layout top view and Panorama image
of the lab setup

Dataset Structure and Labels The dataset structure is or-
ganized in the following way: For every instance of com-
mand there is an ID along with the following: corresponding
IDs for participant, video, speech, gesture, pose, and state,
time onset and offset of speech and gesture, text for speech,
task group of action object tuple (more details in below),
one-hot encoding of speech and reference of speech for ob-
ject and action, one-hot encoding of gesture, reference of
gesture for object and action, gesture containing task and
non-intent, one-hot encoding for all 6 body parts for task
action gesture, task object gesture, and non-intent gesture.

There are eleven (11) Action groups namely: Add, Clean
Up, Cut, Fetch, Put On, Serve, Stir, Take Off, Transfer, Turn
Off, and Turn On and twenty (20) interaction Object groups
namely: Carrot, Celery, Lid, Oil, Pan, Pepper, Pot, Potato,
Salt, Soup, Spices, Tomato, Veges, Cutting Board, Knife,
Bowl, Spatula, Ladle, Stove, and Sink. As shown in Fig. 8,
Objects can have various states for example, Onion can be
whole or cut represented Onion(Cut, Whole) or Onion(Cut,
Pieces). Similarly, other attribute such as On, In, Out, Cov-
ered, Uncovered, TurnedOn, TurnedOff, Contains, Visible,
NotVisible, Grasped, Ungrasped, and six degrees of free-
dom Location and Rotation. Actions or Time can causes the
Object states to change. Since all the objects and actions
exist in a single plane, participant gaze and pointing ges-
ture can be in one of three directions Left, Middle, or Right
shown my the black dotted lines in Fig. 8. Video ID, pose ID,
and state ID all refer to external files in their corresponding
folder. Data is available in two formats CSV and Python dic-
tionary pickle file. Python scripts will be provided to load
and parse each file.

Post Processing: Data Processing, Synchronization, and
Camera Calibration It is important to clean up the data
and make it easy for researchers to use the data. Careful iter-
ative steps were taken to prepare the data to ensure integrity,
quality, validity, and fairness. The raw data is processed, an-
notated, validated, visualized, and curated for downstream

analysis and machine learning tasks in the following way.
i) Multi-camera Calibration: A standard 12×8 5” checker

board was recorded using ROS, and Kalibr package (Fur-
gale, Rehder, and Siegwart 2013) to compute the cameras
intrinsic and extrinsic matrix. If the average re-projection er-
ror was greater than 1 px., the calibration was repeated.

ii) Multi-camera Audio-Video Synchronization and Data
Compression: All the data was recorded using ROS bag.
These recorded video frames from each cameras tend to
have dynamically varying frames per second rates anywhere
from 25 fps to 32 fps which makes it difficult to synchro-
nize with sound. For this reason, the audio recording is ex-
tracted from a well established audio-video camera such as
Apple iPhone camera. A flashing color screen from another
computer is placed in the middle of the lab within all the
cameras’ field of view. A ROS start message is also pub-
lished to store and identify the starting flag of the session
for all other data. The changing color from red to blue is
used to denote the mark of the starting frame and the ROS
bag start message time is used for offsetting other messages.
The frames are then streamed to a canvas that is 6× the size
of 720p i.e., 2560×2560 where each row is a 720p stereo
camera frame. At 33.33ms the latest state of the frame is
recorded. The iPhone video is also clipped starting from the
blue frames whose sound is then merged with the large can-
vas video to generate the data. This data is then re-encoded
to be compressed using FFMPEG and NVIDIA TITAN X
H.264 encoder (FFmpeg.org 2021).

Data Annotation Similar to (Liu et al. 2021), multiple
people annotated the data for purposes of speed and relia-
bility. Each annotations were annotated at least twice with
up to three round of agreement checks. Data with differ-
ence in opinion that could not come to agreement were sub-
ject to voting by five annotators to require minimum 80%
score, otherwise were left out from the final label list. The
data was annotated using Fast Event Video Annotation Tool
(FEVA (Shrestha et al. 2023)) (see Fig. 3). Speech and ges-
ture onset and offset of each command is annotated by two
researchers. The data is stored using a json format with
FEVA dataset schema v2.1. Speech was generated using Ot-
ter (Otter.ai 2021) which was audited by two researchers.
The human pose were extracted using OpenPose (Cao et al.
2019) which we filtered to discard frames with large errors
or joints that were not detected. The full dataset schema is
detailed in the appendix. Each event is then annotated by
five independent annotators using FEVA crowd based on the
ontology as shown in Fig. 5.

Inter-rater Reliability Inter-rate reliability (IRR) was
computed using Cohen’s Kappa (Cohen 1960) and annota-
tion was updated in three rounds where 100% agreement
was reached. The round 1 IIR for modality was 99.7% for
speech, 94.4% for gesture. Similarly, for speech reference
for object was 97.3%, for action was 99.3%. For gesture
type, Task oriented was 85.2%, and non-intent was 72.0%.
For gesture reference for object was 77.9%, and for action
80.3%. For task object reference body parts was 91.4%,
task action body parts 88.8%, and non-intent body parts was
79.9%. All scoring well above recommended 70%. Modal-



ity and speech reference reached 100% agreement in round
2 correcting for mistakes and revised look. For gesture type,
reference gesture, and gesture body parts, most reached ap-
proximately 90% in round 2 and 100% in round 3.

Dataset Statistical Insights
Insight 1 Overall 97.3% of the commands contained speech
and 81.5% contained gesture, with 81.0% containing both at
the same time. However, commands with speech but with-
out gesture drops to 18.46% and gesture only to 2.7%. This
implies much higher preference for speech over gesture, but
also shows gesture being used with speech significantly.

Insight 2: While gestures are used 81.54% of the time, it is
only used 2.7% of time implying people are less likely to use
gesture independently in the context of kitchen tasks. When
gestures are used, 74.68% of the time was conveying task
oriented messages while 56.55% of the time also contained
non-intent gestures. Independently, task oriented message
that did not have any non-intent gestures were 42.70% of
the time. This implies non-intent gestures can be confound-
ing the overall gesture and wrongly interpreted by models
that naively model the human motion. For instance, there
are several instances where some participants use a rhyth-
mic (beat) gestures to regulate and help them express a mes-
sage they are having difficulty expressing. Those instances,
naively the gesture look a cutting motion. Without speech
these gestures are ambiguous and can be misleading.

As shown in Fig. 9 majority of the time, right and left
hands are being for gestures which seems obvious. How-
ever, regardless of the handedness, in a two-tailed T-test
across participants, people on average used left hand more
to indicate action gestures (M=63.50, SD=18.87) compared
to (M=25.44, SD=13.78) with the right hand t=6.90933,
p<0.00001. This can be explained by the fact that, most of
the actions with the left hands were for activities that was
happening to the left side of the user implying spatial prior-
ity people give to express with gesture.

Insight 3: The data format that we collected can be used
to train machine learning models to use multimodal data for
many tasks such as command recognition, visual question
and answering, temporal segmentation of people behavior,
learning cascaded command intents, and so on. These can
be useful for teaching robots to understand our intents of
our commands better.

Insight 4: As stated in Insight 2 and in the speech data,
people often refer to spatial objects and locations, items re-
ferred to from previous commands, using the same words
for two items such as pot for both the pan and the pot, us-
ing words like fire to mean the stove and so on. These kinds
of information is required by the robot to make observation
outside of the human command to understand the bigger
context of the commands. This dataset take a step in that
direction. But more work is needed.

• Modality: The first distinction is the modality of the com-
munications with the presence or absence of speech and
gesture. Speech includes primarily the language, while
para-linguistic features are reserved for future work. Ges-
tures include full body static postures or dynamic move-

Figure 8: NatSGD Dataset (a) Participant Point of View
(POV) first person view of the kitchen scene (b) Top view
of the states of the kitchen, the robot, and the participant.

ments, however, facial expressions and eye gaze are
planned for future work.

• Reference: For robots to perform tasks, information of
the action and the target object is key for the competition
of the said task (Yang et al. 2015). Therefore, each speech
and gesture clips are independently annotated for their
references to the objects that the task requires the robot
to interact with and the actions the robot needs to perform
with or to the objects. These provide rich information on
the “what”, “where”, and the “how” of the task.

• Gesture Type: Building on the Communicative-
Informative dichotomy (Abner, Cooperrider, and
Goldin-Meadow 2015) introduced by Lyons in Seman-
tics (Lyons 1977), we segment the gestures based on the
intent of the speaker as perceived by the receiver. We
segment gestures into Task oriented and Non-intent. Task
gestures serves to clearly and intentionally communicate
the desired task to be performed. Non-intent gestures
include static postures or dynamic movements that
are not intended to communicate the specifics of the
desired task. These gestures may provide additional
contextual information, however, they have to be implied
by the receiver and often tend to have a large degree of
disagreement between annotators on what they mean or
imply. Isolating these motions can help machine learning
systems to classify gesture useful for interpreting the
desired task information the speaker is intending to
communicate from the gesture along with the speech.
The non-intent gestures can also be used to gather the
state of the speaker.

• Body Parts: For all task action or object or non-intent
gestures, the corresponding body parts are clearly anno-
tated and are divided into 6 body part groups: (1) head
(2) torso (3) left hand (4) right hand (5) left leg and (6)
right leg.



Figure 9: The distribution of gesture by body part usage for
intent and reference dimensions for the gesture command.
Right hand (RH), Left hand (LH), Head (H), Torso (T),
Right leg (RL), and Left leg (LL).

Figure 10: In this example, the participants are commanding
the robot to cut onions where the participant’s natural choice
of communication is diverse.
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